Outlier Detection for Temporal Data: A Survey

In the statistics community, outlier detection for time series data has been studied for decades. Recently, with advances in hardware and software technology, there has been a large body of work on temporal outlier detection from a computational perspective within the computer science community. In particular, advances in hardware technology have enabled the availability of various forms of temporal data collection mechanisms, and advances in software technology have enabled a variety of data management mechanisms. This has fueled the growth of different kinds of data sets such as data streams, spatio-temporal data, distributed streams, temporal networks, and time series data, generated by a multitude of applications. There arises a need for an organized and detailed study of the work done in the area of outlier detection with respect to such temporal datasets. In this survey, we provide a comprehensive and structured overview of a large set of interesting outlier definitions for various forms of temporal data, novel techniques, and application scenarios in which specific definitions and techniques have been widely used.

[1]  Terran Lane,et al.  An Application of Machine Learning to Anomaly Detection , 1999 .

[2]  Abhishek Sharma,et al.  Context-Aware Time Series Anomaly Detection for Complex Systems , 2013 .

[3]  Jae Won Lee,et al.  OutlierD: an R package for outlier detection using quantile regression on mass spectrometry data , 2008, Bioinform..

[4]  M. Kraetzl,et al.  Detection of abnormal change in dynamic networks , 1999, 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251).

[5]  Mark Crovella,et al.  Characterization of network-wide anomalies in traffic flows , 2004, IMC '04.

[6]  Dennis Shasha,et al.  Efficient elastic burst detection in data streams , 2003, KDD '03.

[7]  Matthew O. Ward,et al.  Neighbor-based pattern detection for windows over streaming data , 2009, EDBT '09.

[8]  D. Endler,et al.  Intrusion detection. Applying machine learning to Solaris audit data , 1998, Proceedings 14th Annual Computer Security Applications Conference (Cat. No.98EX217).

[9]  Charu C. Aggarwal,et al.  Evolutionary Clustering and Analysis of Bibliographic Networks , 2011, 2011 International Conference on Advances in Social Networks Analysis and Mining.

[10]  Sanjay Chawla,et al.  Spatio-temporal Outlier Detection in Precipitation Data , 2008, KDD Workshop on Knowledge Discovery from Sensor Data.

[11]  Alan S. Perelson,et al.  Self-nonself discrimination in a computer , 1994, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy.

[12]  Cyrus Shahabi,et al.  TSA-tree: a wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data , 2000, Proceedings. 12th International Conference on Scientific and Statistica Database Management.

[13]  Charu C. Aggarwal,et al.  Finding Top-k Shortest Path Distance Changes in an Evolutionary Network , 2011, SSTD.

[14]  Nick Koudas,et al.  Identifying, attributing and describing spatial bursts , 2010, Proc. VLDB Endow..

[15]  R. Tsay Time Series Model Specification in the Presence of Outliers , 1986 .

[16]  Jian Pei,et al.  WAT: Finding Top-K Discords in Time Series Database , 2007, SDM.

[17]  Christoph C. Michael,et al.  Two state-based approaches to program-based anomaly detection , 2000, Proceedings 16th Annual Computer Security Applications Conference (ACSAC'00).

[18]  Mohammed J. Zaki,et al.  ADMIT: anomaly-based data mining for intrusions , 2002, KDD.

[19]  Philip K. Chan,et al.  Learning Patterns from Unix Process Execution Traces for Intrusion Detection , 1997 .

[20]  G. C. Tiao,et al.  Estimation of time series parameters in the presence of outliers , 1988 .

[21]  T.Y. Lin,et al.  Anomaly detection , 1994, Proceedings New Security Paradigms Workshop.

[22]  Dipankar Dasgupta,et al.  A comparison of negative and positive selection algorithms in novel pattern detection , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[23]  Vikramaditya R. Jakkula,et al.  Anomaly Detection Using Temporal Data Mining in a Smart Home Environment , 2008, Methods of Information in Medicine.

[24]  Hisashi Kashima,et al.  Eigenspace-based anomaly detection in computer systems , 2004, KDD.

[25]  Nong Ye,et al.  A Markov Chain Model of Temporal Behavior for Anomaly Detection , 2000 .

[26]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[27]  Dawei Liu,et al.  Efficient anomaly monitoring over moving object trajectory streams , 2009, KDD.

[28]  Ma Xiujun,et al.  Detecting spatio-temporal outliers in climate dataset: a method study , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[29]  Jiawei Han,et al.  Community Distribution Outlier Detection in Heterogeneous Information Networks , 2013, ECML/PKDD.

[30]  Yizhou Sun,et al.  On community outliers and their efficient detection in information networks , 2010, KDD.

[31]  Dimitrios Gunopulos,et al.  Distributed deviation detection in sensor networks , 2003, SGMD.

[32]  M. Otto,et al.  Outliers in Time Series , 1972 .

[33]  Michael Gertz,et al.  Detection and Exploration of Outlier Regions in Sensor Data Streams , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[34]  Charu C. Aggarwal,et al.  Event Detection in Social Streams , 2012, SDM.

[35]  Salvatore J. Stolfo,et al.  Modeling system calls for intrusion detection with dynamic window sizes , 2001, Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'01.

[36]  Li Wei,et al.  Experiencing SAX: a novel symbolic representation of time series , 2007, Data Mining and Knowledge Discovery.

[37]  Eamonn J. Keogh,et al.  HOT SAX: efficiently finding the most unusual time series subsequence , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[38]  Eamonn J. Keogh,et al.  Towards parameter-free data mining , 2004, KDD.

[39]  Ran Wolff,et al.  In-Network Outlier Detection in Wireless Sensor Networks , 2006, ICDCS.

[40]  Jiawei Han,et al.  Mining Approximate Top-K Subspace Anomalies in Multi-Dimensional Time-Series Data , 2007, VLDB.

[41]  Chang-Tien Lu,et al.  Wavelet fuzzy classification for detecting and tracking region outliers in meteorological data , 2004, GIS '04.

[42]  Jae-Gil Lee,et al.  Trajectory Outlier Detection: A Partition-and-Detect Framework , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[43]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[44]  Jiong Yang,et al.  CLUSEQ: efficient and effective sequence clustering , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[45]  Harold S. Javitz,et al.  The NIDES Statistical Component Description and Justification , 1994 .

[46]  C. Faloutsos,et al.  EVENT DETECTION IN TIME SERIES OF MOBILE COMMUNICATION GRAPHS , 2010 .

[47]  Lon-Mu Liu,et al.  Joint Estimation of Model Parameters and Outlier Effects in Time Series , 1993 .

[48]  Rynson W. H. Lau,et al.  Knowledge and Data Engineering for e-Learning Special Issue of IEEE Transactions on Knowledge and Data Engineering , 2008 .

[49]  Eamonn J. Keogh,et al.  Finding the most unusual time series subsequence: algorithms and applications , 2006, Knowledge and Information Systems.

[50]  Aleksandar Lazarevic,et al.  Incremental Local Outlier Detection for Data Streams , 2007, 2007 IEEE Symposium on Computational Intelligence and Data Mining.

[51]  Mikhail J. Atallah,et al.  Detection of significant sets of episodes in event sequences , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[52]  Eamonn J. Keogh,et al.  Approximations to magic: finding unusual medical time series , 2005, 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05).

[53]  Hector Garcia-Molina,et al.  Web graph similarity for anomaly detection (poster) , 2008, WWW.

[54]  Daniel Peña,et al.  Detection of outlier patches in autoregressive time series , 1998 .

[55]  Cheng Zhang,et al.  Native API based Windows anomaly intrusion detection method using SVM , 2006, IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC'06).

[56]  Barak A. Pearlmutter,et al.  Detecting intrusions using system calls: alternative data models , 1999, Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No.99CB36344).

[57]  Xiao-yun Chen,et al.  Multi-scale anomaly detection algorithm based on infrequent pattern of time series , 2008 .

[58]  Fabio A. González,et al.  Anomaly Detection Using Real-Valued Negative Selection , 2003, Genetic Programming and Evolvable Machines.

[59]  Leonid Portnoy,et al.  Intrusion detection with unlabeled data using clustering , 2000 .

[60]  Junshui Ma,et al.  Online novelty detection on temporal sequences , 2003, KDD '03.

[61]  Li Wei,et al.  Assumption-Free Anomaly Detection in Time Series , 2005, SSDBM.

[62]  Shaomin Mu,et al.  Sequence-similarity kernels for SVMs to detect anomalies in system calls , 2007, Neurocomputing.

[63]  Eleazar Eskin,et al.  A GEOMETRIC FRAMEWORK FOR UNSUPERVISED ANOMALY DETECTION: DETECTING INTRUSIONS IN UNLABELED DATA , 2002 .

[64]  Eamonn J. Keogh,et al.  Finding Time Series Discords Based on Haar Transform , 2006, ADMA.

[65]  W. Drosdowsky,et al.  An analysis of Australian seasonal rainfall anomalies: 1950–1987. I: Spatial patterns , 1993 .

[66]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[67]  Philip S. Yu,et al.  Outlier detection in graph streams , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[68]  Ana Bianco,et al.  Outlier Detection in Regression Models with ARIMA Errors Using Robust Estimates , 2001 .

[69]  Vipin Kumar,et al.  Anomaly Detection for Discrete Sequences: A Survey , 2012, IEEE Transactions on Knowledge and Data Engineering.

[70]  Rajeev Gandhi,et al.  Ganesha: blackBox diagnosis of MapReduce systems , 2010, PERV.

[71]  Rayford B. Vaughn,et al.  Efficient Modeling of Discrete Events for Anomaly Detection Using Hidden Markov Models , 2005, ISC.

[72]  Stephanie Forrest,et al.  Intrusion Detection Using Sequences of System Calls , 1998, J. Comput. Secur..

[73]  Yizhou Sun,et al.  Community Trend Outlier Detection Using Soft Temporal Pattern Mining , 2012, ECML/PKDD.

[74]  Eamonn J. Keogh,et al.  Disk aware discord discovery: finding unusual time series in terabyte sized datasets , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[75]  Philip S. Yu,et al.  Under Consideration for Publication in Knowledge and Information Systems on Clustering Massive Text and Categorical Data Streams , 2022 .

[76]  Douglas M. Hawkins Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.

[77]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[78]  Brandon Pincombea,et al.  Anomaly Detection in Time Series of Graphs using ARMA Processes , 2007 .

[79]  David J. Marchette,et al.  Scan Statistics on Enron Graphs , 2005, Comput. Math. Organ. Theory.

[80]  H. Bunke,et al.  Median graphs and anomalous change detection in communication networks , 2002, Final Program and Abstracts on Information, Decision and Control.

[81]  Srinivasan Parthasarathy,et al.  Fast Distributed Outlier Detection in Mixed-Attribute Data Sets , 2006, Data Mining and Knowledge Discovery.

[82]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[83]  Pavlos Protopapas,et al.  Finding anomalous periodic time series , 2009, Machine Learning.

[84]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[85]  A. Raftery,et al.  Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models , 1996 .

[86]  Salvatore J. Stolfo,et al.  A Geometric Framework for Unsupervised Anomaly Detection , 2002, Applications of Data Mining in Computer Security.

[87]  Vasant Honavar,et al.  Learning Classifiers for Misuse Detection Using a Bag of System Calls Representation , 2005, ISI.

[88]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[89]  Yizhou Sun,et al.  Integrating community matching and outlier detection for mining evolutionary community outliers , 2012, KDD.

[90]  Dimitrios Gunopulos,et al.  Online outlier detection in sensor data using non-parametric models , 2006, VLDB.

[91]  Charu C. Aggarwal,et al.  On Anomalous Hotspot Discovery in Graph Streams , 2013, 2013 IEEE 13th International Conference on Data Mining.

[92]  Jeffrey Scott Vitter,et al.  Mining deviants in time series data streams , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[93]  Srinivasan Parthasarathy,et al.  LOADED: link-based outlier and anomaly detection in evolving data sets , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[94]  Carla Marceau,et al.  Characterizing the behavior of a program using multiple-length N-grams , 2001, NSPW '00.

[95]  David J. Hill,et al.  Anomaly detection in streaming environmental sensor data: A data-driven modeling approach , 2010, Environ. Model. Softw..

[96]  Charu C. Aggarwal,et al.  On Abnormality Detection in Spuriously Populated Data Streams , 2005, SDM.

[97]  Eyal Amir,et al.  Real-time Bayesian Anomaly Detection for Environmental Sensor Data , 2007 .

[98]  Sangkyum Kim,et al.  Motion-Alert: Automatic Anomaly Detection in Massive Moving Objects , 2006, ISI.

[99]  Anup K. Ghosh,et al.  A Study in Using Neural Networks for Anomaly and Misuse Detection , 1999, USENIX Security Symposium.

[100]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[101]  Ira Assent,et al.  AnyOut: Anytime Outlier Detection on Streaming Data , 2012, DASFAA.

[102]  Kenji Yamanishi,et al.  A unifying framework for detecting outliers and change points from non-stationary time series data , 2002, KDD.

[103]  Michael Schatz,et al.  Learning Program Behavior Profiles for Intrusion Detection , 1999, Workshop on Intrusion Detection and Network Monitoring.

[104]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data , 2014, Outlier Detection for Temporal Data.

[105]  R. Tsay,et al.  Outliers in multivariate time series , 2000 .

[106]  Eamonn J. Keogh,et al.  Finding surprising patterns in a time series database in linear time and space , 2002, KDD.

[107]  Haifeng Chen,et al.  Modeling and Tracking of Transaction Flow Dynamics for Fault Detection in Complex Systems , 2006, IEEE Transactions on Dependable and Secure Computing.

[108]  Sankar K. Pal,et al.  A Rough Set Approach to Spatio-temporal Outlier Detection , 2011, WILF.

[109]  C.-C. Jay Kuo,et al.  Distributed spatio-temporal outlier detection in sensor networks , 2005, SPIE Defense + Commercial Sensing.

[110]  A. N. Srivastava,et al.  Anomaly Detection in Large Sets of High-Dimensional Symbol Sequences , 2006 .

[111]  Pingzhi Fan,et al.  A new anomaly detection method based on hierarchical HMM , 2003, Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies.

[112]  Sangkyum Kim,et al.  ROAM: Rule- and Motif-Based Anomaly Detection in Massive Moving Object Data Sets , 2007, SDM.

[113]  Dipankar Dasgupta,et al.  Anomaly detection in multidimensional data using negative selection algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[114]  Charu C. Aggarwal,et al.  Outlier Analysis , 2013, Springer New York.

[115]  Anup K. Ghosh,et al.  Using Program Behavior Pro � les for Intrusion Detection , 1999 .

[116]  Boleslaw K. Szymanski,et al.  Recursive data mining for masquerade detection and author identification , 2004, Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop, 2004..

[117]  P. Dickinson,et al.  Investigation of graph edit distance cost functions for detection of network anomalies , 2007 .

[118]  Salvatore J. Stolfo,et al.  Data Mining Approaches for Intrusion Detection , 1998, USENIX Security Symposium.

[119]  Zhen Guo,et al.  Tracking Probabilistic Correlation of Monitoring Data for Fault Detection in Complex Systems , 2006, International Conference on Dependable Systems and Networks (DSN'06).

[120]  Yiguo Qiao,et al.  Anomaly intrusion detection method based on HMM , 2002 .

[121]  Ji Zhang,et al.  SPOT: A System for Detecting Projected Outliers From High-dimensional Data Streams , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[122]  Carla E. Brodley,et al.  Temporal sequence learning and data reduction for anomaly detection , 1998, CCS '98.

[123]  Paul Helman,et al.  An immunological approach to change detection: algorithms, analysis and implications , 1996, Proceedings 1996 IEEE Symposium on Security and Privacy.

[124]  Derya Birant,et al.  Spatio-temporal outlier detection in large databases , 2006, 28th International Conference on Information Technology Interfaces, 2006..

[125]  Raman K. Mehra,et al.  Detection and classification of intrusions and faults using sequences of system calls , 2001, SGMD.

[126]  Dipankar Dasgupta,et al.  Novelty detection in time series data using ideas from immunology , 1996 .

[127]  M. Kraetzl,et al.  Novel approaches in modelling dynamics of networked surveillance environment , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[128]  Ashok N. Srivastava,et al.  Anomaly Detection and Diagnosis Algorithms for Discrete Symbol Sequences with Applications to Airline Safety , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[129]  Priya Narasimhan,et al.  Tiresias: Black-Box Failure Prediction in Distributed Systems , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[130]  Mikhail J. Atallah,et al.  Reliable detection of episodes in event sequences , 2004, Knowledge and Information Systems.

[131]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[132]  Mario Innocenti,et al.  Fault detection using neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[133]  Graham J. Williams,et al.  On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms , 2000, KDD '00.

[134]  T. Lane,et al.  Sequence Matching and Learning in Anomaly Detection for Computer Security , 1997 .

[135]  Li Wei,et al.  SAXually Explicit Images: Finding Unusual Shapes , 2006, Sixth International Conference on Data Mining (ICDM'06).

[136]  Praneeth Namburi,et al.  Online Outlier Detection Based on Relative Neighbourhood Dissimilarity , 2008, WISE.

[137]  Sanjay Chawla,et al.  Mining for Outliers in Sequential Databases , 2006, SDM.

[138]  Michael Gertz,et al.  ORDEN: outlier region detection and exploration in sensor networks , 2009, SIGMOD Conference.

[139]  J. Ma,et al.  Time-series novelty detection using one-class support vector machines , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[140]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[141]  Gang Chen,et al.  Attribute Outlier Detection over Data Streams , 2010, DASFAA.

[142]  Bo Gao,et al.  HMMs (Hidden Markov models) based on anomaly intrusion detection method , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[143]  Vijayalakshmi Atluri,et al.  Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets , 2004, SAC '04.

[144]  R. Lasaponara On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series , 2006 .

[145]  S. Muthukrishnan,et al.  Mining Deviants in a Time Series Database , 1999, VLDB.

[146]  Philip S. Yu,et al.  Outlier Detection with Uncertain Data , 2008, SDM.

[147]  Anup K. Ghosh,et al.  Detecting anomalous and unknown intrusions against programs , 1998, Proceedings 14th Annual Computer Security Applications Conference (Cat. No.98EX217).

[148]  Stephanie Forrest,et al.  A sense of self for Unix processes , 1996, Proceedings 1996 IEEE Symposium on Security and Privacy.

[149]  Hui Xiong,et al.  Top-Eye: top-k evolving trajectory outlier detection , 2010, CIKM.

[150]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[151]  Zhilin Li,et al.  A hybrid approach to detect spatio-temporal outliers , 2004 .

[152]  Philip Chan,et al.  Learning States and Rules for Detecting Anomalies in Time Series , 2005, Applied Intelligence.

[153]  Lionel Tarassenko,et al.  A System for the Analysis of Jet Engine Vibration Data , 1999, Integr. Comput. Aided Eng..

[154]  Alberto Luceñ,et al.  Detecting possibly non‐consecutive outliers in industrial time series , 1998 .

[155]  Fabrizio Angiulli,et al.  Detecting distance-based outliers in streams of data , 2007, CIKM '07.

[156]  Miro Kraetzl,et al.  Using graph diameter for change detection in dynamic networks , 2006, Australas. J Comb..

[157]  Kwang-Ho Ro,et al.  Outlier detection for high-dimensional data , 2015 .

[158]  Vipin Kumar,et al.  Comparative Evaluation of Anomaly Detection Techniques for Sequence Data , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[159]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[160]  Hector Garcia-Molina,et al.  Web graph similarity for anomaly detection , 2010, Journal of Internet Services and Applications.

[161]  Jae-Gil Lee,et al.  Temporal Outlier Detection in Vehicle Traffic Data , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[162]  Zhilin Li,et al.  A Multiscale Approach for Spatio‐Temporal Outlier Detection , 2006, Trans. GIS.

[163]  R. Tsay,et al.  Outlier Detection in Multivariate Time Series by Projection Pursuit , 2006 .

[164]  Martin Meckesheimer,et al.  Automatic outlier detection for time series: an application to sensor data , 2007, Knowledge and Information Systems.

[165]  Mikhail J. Atallah,et al.  Markov Models for Identification of Significant Episodes , 2005, SDM.

[166]  Dimitrios Gunopulos,et al.  On The Spatiotemporal Burstiness of Terms , 2012, Proc. VLDB Endow..

[167]  Boleslaw K. Szymanski,et al.  FUZZY ROC CURVES FOR THE 1 CLASS SVM: APPLICATION TO INTRUSION DETECTION , 2005 .

[168]  Nirvana Meratnia,et al.  Outlier Detection Techniques for Wireless Sensor Networks: A Survey , 2008, IEEE Communications Surveys & Tutorials.