On a Lax-Algebraic Characterization of Closed Maps

M. M. Clementino and W. Tholen presented recently a lax-algebraic generalization of the well-known result on the coincidence of two classes of continuous maps between topological spaces: proper (maps, whose pullbacks are closed) and perfect (closed maps with compact fibres). Their achievement depends on a particular lax-algebraic extension of the concept of closed map, which relies on constructively completely distributive quantales. This paper proposes a definition of closed maps, which is not dependant on the underlying quantale of lax algebras, and proves the results of M. M. Clementino and W. Tholen in the new setting. We also show that our presented notion fits the axiomatic definition of closed maps in a category.

[1]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[2]  Casimir Kuratowski Evaluation de la classe borélienne ou projective d'un ensemble de points à l'aide des symboles logiques , 1931 .

[3]  Proper maps for lax algebras and the Kuratowski-Mrówka Theorem , 2013 .

[4]  K. I. Rosenthal The Theory of Quantaloids , 1996 .

[5]  H. Kunzi Complete quasi-pseudo-metric spaces , 1992 .

[6]  Jan Paseka,et al.  Algebraic and Categorical Aspects of Quantales , 2008 .

[7]  Dirk Hofmann,et al.  Effective Descent Morphisms in Categories of Lax Algebras , 2004, Appl. Categorical Struct..

[8]  Walter Tholen,et al.  Categorical Foundations: A Functional Approach to General Topology , 2003 .

[9]  R. Lowen Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad , 1997 .

[10]  Dirk Hofmann,et al.  Lax algebra meets topology , 2012 .

[11]  Dirk Hofmann,et al.  One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..

[12]  S. Mrówka Compactness and product spaces , 1959 .

[13]  R. J. Wood Ordered Sets via Adjunctions , 2002 .

[14]  Gavin J. Seal CANONICAL AND OP-CANONICAL LAX ALGEBRAS , 2005 .

[15]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[16]  Manuela Sobral,et al.  Categorical Foundations: Aspects of Monads , 2003 .

[17]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[18]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .