On a Lax-Algebraic Characterization of Closed Maps
暂无分享,去创建一个
[1] Nitakshi Goyal,et al. General Topology-I , 2017 .
[2] Casimir Kuratowski. Evaluation de la classe borélienne ou projective d'un ensemble de points à l'aide des symboles logiques , 1931 .
[3] Proper maps for lax algebras and the Kuratowski-Mrówka Theorem , 2013 .
[4] K. I. Rosenthal. The Theory of Quantaloids , 1996 .
[5] H. Kunzi. Complete quasi-pseudo-metric spaces , 1992 .
[6] Jan Paseka,et al. Algebraic and Categorical Aspects of Quantales , 2008 .
[7] Dirk Hofmann,et al. Effective Descent Morphisms in Categories of Lax Algebras , 2004, Appl. Categorical Struct..
[8] Walter Tholen,et al. Categorical Foundations: A Functional Approach to General Topology , 2003 .
[9] R. Lowen. Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad , 1997 .
[10] Dirk Hofmann,et al. Lax algebra meets topology , 2012 .
[11] Dirk Hofmann,et al. One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..
[12] S. Mrówka. Compactness and product spaces , 1959 .
[13] R. J. Wood. Ordered Sets via Adjunctions , 2002 .
[14] Gavin J. Seal. CANONICAL AND OP-CANONICAL LAX ALGEBRAS , 2005 .
[15] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[16] Manuela Sobral,et al. Categorical Foundations: Aspects of Monads , 2003 .
[17] Jirí Adámek,et al. Abstract and Concrete Categories - The Joy of Cats , 1990 .
[18] Nicolas Bourbaki,et al. Elements of mathematics , 2004 .