Observation of non-Markovianity at room temperature by prolonging entanglement in solids.

The non-Markovia dynamics of quantum evolution plays an important role in open quantum sytem. However, how to quantify non-Markovian behavior and what can be obtained from non- Markovianity are still open questions, especially in complex solid systems. Here we address the problem of quantifying non-Markovianity with entanglement in a genuine noisy solid state system at room temperature. We observed the non-Markovianity of quantum evolution with entanglement. By prolonging entanglement with dynamical decoupling, we can reveal the non-Markovianity usually concealed in the environment and obtain detailed environment information. This method is expected to be useful in quantum metrology and quantum information science.

[1]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[2]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[3]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[4]  Franco Nori,et al.  Quantifying Non-Markovianity with Temporal Steering. , 2015, Physical review letters.

[5]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[6]  D. Chruściński,et al.  Degree of non-Markovianity of quantum evolution. , 2013, Physical review letters.

[7]  S. Olivares,et al.  Continuous-variable quantum key distribution in non-Markovian channels , 2010, 1011.0304.

[8]  Franco Nori,et al.  General non-Markovian dynamics of open quantum systems. , 2012, Physical review letters.

[9]  Jiangbin Gong,et al.  Preservation of bipartite pseudoentanglement in solids using dynamical decoupling. , 2011, Physical review letters.

[10]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[11]  C. Santori,et al.  Quantum Control over Single Spins in Diamond , 2013 .

[12]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[13]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[14]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[15]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[16]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[17]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2017 .

[18]  L. Childress,et al.  Supporting Online Material for , 2006 .

[19]  A. Yacoby,et al.  Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond , 2018, 1804.08742.

[20]  Jiangfeng Du,et al.  Detection of radio-frequency field with a single spin in diamond , 2016 .

[21]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[22]  Mauro Paternostro,et al.  Linear Optics Simulation of Quantum Non-Markovian Dynamics , 2012, Scientific Reports.

[23]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[24]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[25]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[26]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[27]  Jiangfeng Du,et al.  Quantum metrology with single spins in diamond under ambient conditions , 2018 .

[28]  G. Scholes,et al.  Coherent Intrachain Energy Migration in a Conjugated Polymer at Room Temperature , 2009, Science.

[29]  Jiangfeng Du,et al.  Quantum information processing and metrology with color centers in diamonds , 2014 .

[30]  J. Eisert,et al.  Observation of non-Markovian micromechanical Brownian motion , 2013, Nature Communications.

[31]  A. Badolato,et al.  Knight-field-enabled nuclear spin polarization in single quantum dots. , 2005, Physical review letters.

[32]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[33]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[34]  Guang-Can Guo,et al.  Non-Markovian discrete qubit dynamics , 2016, 1602.00060.

[35]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[36]  G. Karpat,et al.  Non-Markovianity through Accessible Information , 2014, 1402.5395.

[37]  D. Fisher,et al.  Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond , 2009 .

[38]  Jiangfeng Du,et al.  Observation of an anomalous decoherence effect in a quantum bath at room temperature , 2011, Nature communications.

[39]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[40]  Bao-Jie Liu,et al.  Fast holonomic quantum computation based on solid-state spins with all-optical control , 2017, 1705.08852.

[41]  K. Nobusada,et al.  Applicability of Site-Basis Time-Evolution Equation for Thermalization of Exciton States in a Quantum Dot Array , 2009 .

[42]  S. Huelga,et al.  Non-Markovianity-assisted steady state entanglement. , 2011, Physical review letters.