Estimating the non-linear dynamics of free-flying objects

This paper develops a model-free method to estimate the dynamics of free-flying objects. We take a realistic perspective to the problem and investigate tracking accurately and very rapidly the trajectory and orientation of an object so as to catch it in flight. We consider the dynamics of complex objects where the grasping point is not located at the center of mass. To achieve this, a density estimate of the translational and rotational velocity is built based on the trajectories of various examples. We contrast the performance of six non-linear regression methods (Support Vector Regression (SVR) with Radial Basis Function (RBF) kernel, SVR with polynomial kernel, Gaussian Mixture Regression (GMR), Echo State Network (ESN), Genetic Programming (GP) and Locally Weighted Projection Regression (LWPR)) in terms of precision of recall, computational cost and sensitivity to choice of hyper-parameters. We validate the approach for real-time motion tracking of 5 daily life objects with complex dynamics (a ball, a fully-filled bottle, a half-filled bottle, a hammer and a pingpong racket). To enable real-time tracking, the estimated model of the object's dynamics is coupled with an Extended Kalman Filter for robustness against noisy sensing.

[1]  Nikolaos Papanikolopoulos,et al.  Estimating 3D Positions and Velocities of Projectiles from Monocular Views , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Daniel E. Koditschek,et al.  Planning and Control of Robotic Juggling and Catching Tasks , 1994, Int. J. Robotics Res..

[3]  Yoshihiko Nakamura,et al.  Acquiring Motion Elements for Bidirectional Computation of Motion Recognition and Generation , 2002, ISER.

[4]  A. Billard,et al.  Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models , 2011, IEEE Transactions on Robotics.

[5]  Dominic P. Searson,et al.  GPTIPS: An Open Source Genetic Programming Toolbox For Multigene Symbolic Regression , 2010 .

[6]  Masatoshi Ishikawa,et al.  Ball control in high-speed batting motion using hybrid trajectory generator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[7]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[8]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[9]  Aude Billard,et al.  Coupled dynamical system based arm-hand grasping model for learning fast adaptation strategies , 2012, Robotics Auton. Syst..

[10]  Dana Kulic,et al.  Incremental Learning, Clustering and Hierarchy Formation of Whole Body Motion Patterns using Adaptive Hidden Markov Chains , 2008, Int. J. Robotics Res..

[11]  Daniel E. Koditschek,et al.  Further progress in robot juggling: solvable mirror laws , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Jean-Jacques E. Slotine,et al.  Experiments in Hand-Eye Coordination Using Active Vision , 1995, ISER.

[13]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[14]  Masatoshi Ishikawa,et al.  Robotic catching using a direct mapping from visual information to motor command , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[15]  Aude Billard,et al.  Learning nonlinear multi-variate motion dynamics for real-time position and orientation control of robotic manipulators , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[16]  Koichi Hashimoto,et al.  Online 3-D trajectory estimation of a flying object from a monocular image sequence , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Jan Peters,et al.  Using model knowledge for learning inverse dynamics , 2010, 2010 IEEE International Conference on Robotics and Automation.

[18]  Aude Billard,et al.  Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models , 2011, IEEE Transactions on Robotics.

[19]  Herbert Jaeger,et al.  Optimization and applications of echo state networks with leaky- integrator neurons , 2007, Neural Networks.

[20]  Thorsten Joachims,et al.  Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[21]  Ian Jenkinson,et al.  Application of genetic programming to the calibration of industrial robots , 2007, Comput. Ind..

[22]  Francesco Lacquaniti,et al.  Catching a Ball at the Right Time and Place: Individual Factors Matter , 2012, PloS one.

[23]  Jan Peters,et al.  Model Learning with Local Gaussian Process Regression , 2009, Adv. Robotics.

[24]  F. Sansò,et al.  First GOCE gravity field models derived by three different approaches , 2011 .

[25]  Aude Billard,et al.  Learning motion dynamics to catch a moving object , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[26]  Vladimir Pavlovic,et al.  Time-series classification using mixed-state dynamic Bayesian networks , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[27]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[28]  Andrew Blake,et al.  Learning dynamical models using expectation-maximisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[29]  Christopher G. Atkeson,et al.  Robot Catching: Towards Engaging Human-Humanoid Interaction , 2002, Auton. Robots.

[30]  Stefan Schaal,et al.  Incremental Online Learning in High Dimensions , 2005, Neural Computation.

[31]  Berthold Bäuml,et al.  Kinematically optimal catching a flying ball with a hand-arm-system , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Pascal Willis,et al.  First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon , 1994 .

[33]  Herbert Jaeger,et al.  Adaptive Nonlinear System Identification with Echo State Networks , 2002, NIPS.

[34]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[35]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[36]  Erik D. Goodman,et al.  Genetic Programming-Based Automatic Gait Generation in Joint Space for a Quadruped Robot , 2010, Adv. Robotics.

[37]  R. Ravikanth,et al.  Identification of linear parametrically varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[38]  Stefan Schaal,et al.  Locally Weighted Projection Regression : An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space , 2000 .

[39]  E. Brenner,et al.  Fast Responses of the Human Hand to Changes in Target Position. , 1997, Journal of motor behavior.

[40]  David Finkleman,et al.  A critical assessment of satellite drag and atmospheric density modeling , 2014 .

[41]  Thomas Yunck,et al.  GPS-Based Satellite Tracking System for Precise Positioning , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Sylvain Calinon,et al.  Continuous extraction of task constraints in a robot programming by demonstration framework , 2007 .

[43]  Masatoshi Ishikawa,et al.  Dynamic regrasping using a high-speed multifingered hand and a high-speed vision system , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[44]  ChangHwan Kim,et al.  Human-like catching motion of humanoid using Evolutionary Algorithm(EA)-based imitation learning , 2009, RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication.

[45]  Duy Nguyen-Tuong,et al.  Computed torque control with nonparametric regression models , 2008, 2008 American Control Conference.

[46]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Geir Hovland,et al.  Skill acquisition from human demonstration using a hidden Markov model , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[48]  Felix R. Hoots,et al.  An analytic satellite theory using gravity and a dynamic atmosphere , 1987 .

[49]  Stefan Schaal,et al.  A Library for Locally Weighted Projection Regression , 2008, J. Mach. Learn. Res..

[50]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[51]  M. Buehler,et al.  Sensor-based online trajectory generation for smoothly grasping moving objects , 1994, Proceedings of 1994 9th IEEE International Symposium on Intelligent Control.

[52]  Lawton H. Lee,et al.  Identification of Linear Parameter-Varying Systems Using Nonlinear Programming , 1999 .

[53]  Benjamin Schrauwen,et al.  Supervised learning of internal models for autonomous goal-oriented robot navigation using Reservoir Computing , 2010, 2010 IEEE International Conference on Robotics and Automation.

[54]  A. L. Barker,et al.  Bayesian Estimation and the Kalman Filter , 1994 .

[55]  Serdar Iplikci,et al.  Support Vector Machines Based Generalized Predictive Control of Chaotic Systems , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[56]  Oliver Montenbruck,et al.  Reduced dynamic orbit determination using GPS code and carrier measurements , 2005 .

[57]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[58]  Andrew Blake,et al.  Learning Dynamics of Complex Motions from Image Sequences , 1996, ECCV.

[59]  Gerd Hirzinger,et al.  Trajectory planning for optimal robot catching in real-time , 2011, 2011 IEEE International Conference on Robotics and Automation.

[60]  Stefan Schaal,et al.  Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space , 2000, ICML.

[61]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[62]  Christoph H. Lampert,et al.  Movement templates for learning of hitting and batting , 2010, 2010 IEEE International Conference on Robotics and Automation.

[63]  Daniel H. Grollman,et al.  Dogged Learning for Robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[64]  Aude Billard,et al.  Statistical Learning by Imitation of Competing Constraints in Joint Space and Task Space , 2009, Adv. Robotics.

[65]  Günter Schreiber,et al.  Off-the-shelf vision for a robotic ball catcher , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[66]  T. Michael Knasel,et al.  Robotics and autonomous systems , 1988, Robotics Auton. Syst..

[67]  S. Schaal,et al.  One-Handed Juggling: A Dynamical Approach to a Rhythmic Movement Task. , 1996, Journal of motor behavior.