Coupled-Oscillator Associative Memory Array Operation for Pattern Recognition

The operation of an array of coupled oscillators underlying the associative memory function is demonstrated for various interconnection topologies (cross-connect and star-coupled). Three types of nonlinear oscillators (Andronov-Hopf, phase-locked loop, and spin torque) and their synchronization behavior are compared. Frequency-shift keying scheme of encoding input and memorized data is introduced. The speed of synchronization of oscillators and the evolution of the degree of match are studied as a function of device parameters.

[1]  Wolfgang Porod,et al.  Nanocomputing by field-coupled nanomagnets , 2002 .

[2]  Frank C Hoppensteadt,et al.  Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation , 2010, Nanotechnology.

[3]  David G. Lowe,et al.  University of British Columbia. , 1945, Canadian Medical Association journal.

[4]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[5]  DeLiang Wang,et al.  Locally excitatory globally inhibitory oscillator networks , 1995, IEEE Transactions on Neural Networks.

[6]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[7]  E. Izhikevich,et al.  Oscillatory Neurocomputers with Dynamic Connectivity , 1999 .

[8]  Andreas Knoblauch,et al.  Neural Associative Memory and the Willshaw--Palm Probability Distribution , 2008, SIAM J. Appl. Math..

[9]  Dan W. Patterson,et al.  Artificial Neural Networks: Theory and Applications , 1998 .

[10]  I. N. Krivorotov,et al.  Magnetic vortex oscillator driven by d.c. spin-polarized current , 2007, cond-mat/0702253.

[11]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[12]  J. C. Sloncxewski Current-driven excitation of magnetic multilayers , 2003 .

[13]  Leon O. Chua,et al.  Star Cellular Neural Networks for Associative and Dynamic Memories , 2004, Int. J. Bifurc. Chaos.

[14]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[15]  F. Mancoff,et al.  Direct observation of a propagating spin wave induced by spin-transfer torque. , 2011, Nature nanotechnology.

[16]  Gerard J. Rinkus,et al.  A Cortical Sparse Distributed Coding Model Linking Mini- and Macrocolumn-Scale Functionality , 2010, Front. Neuroanat..

[17]  G. Bertotti,et al.  Nonlinear Magnetization Dynamics in Nanosystems , 2009 .

[18]  J. Katine,et al.  Mutual phase-locking of microwave spin torque nano-oscillators , 2005, Nature.

[19]  Tamás Roska,et al.  On Full-Connectivity Properties of Locally Connected Oscillatory Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Tadashi Shibata,et al.  Non-Boolean Associative Processing: Circuits, System Architecture, and Algorithms , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[22]  F. Sommer,et al.  Neural Associative Memories , 1993 .

[23]  Giovanni Finocchio,et al.  Spin transfer nano-oscillators. , 2013, Nanoscale.

[24]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[25]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[26]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[27]  Justin M. Shaw,et al.  Spin-transfer dynamics in spin valves with out-of-plane magnetized CoNi free layers , 2010 .

[28]  Andrei Slavin,et al.  Microwave sources: spin-torque oscillators get in phase. , 2009, Nature nanotechnology.

[29]  P. Grünberg,et al.  Nobel Lecture: From spin waves to giant magnetoresistance and beyond * , 2008 .

[30]  Fernando Corinto,et al.  Weakly Connected Oscillatory Network Models for Associative and Dynamic Memories , 2007, Int. J. Bifurc. Chaos.

[31]  Frank C. Hoppensteadt,et al.  Pattern recognition via synchronization in phase-locked loop neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[32]  William F. Egan,et al.  Phase-Lock Basics , 1998 .

[33]  Yoshiki Kuramoto,et al.  In International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[34]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[35]  Joy Bose,et al.  Sparse Distributed Memory Using Rank-Order Neural Codes , 2007, IEEE Transactions on Neural Networks.

[36]  G. Bertotti,et al.  Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents. , 2005, Physical review letters.

[37]  Leon O. Chua,et al.  Cellular Neural Networks and Visual Computing: Foundations and Applications , 2002 .

[38]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[39]  Wolfgang Porod,et al.  Physical Implementation of Coherently Coupled Oscillator Networks , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[40]  J. Katine,et al.  Injection locking and phase control of spin transfer nano-oscillators. , 2005, Physical review letters.

[41]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.