High-resolution dynamic atomic force microscopy in liquids with different feedback architectures

Summary The recent achievement of atomic resolution with dynamic atomic force microscopy (dAFM) [Fukuma et al., Appl. Phys. Lett. 2005, 87, 034101], where quality factors of the oscillating probe are inherently low, challenges some accepted beliefs concerning sensitivity and resolution in dAFM imaging modes. Through analysis and experiment we study the performance metrics for high-resolution imaging with dAFM in liquid media with amplitude modulation (AM), frequency modulation (FM) and drive-amplitude modulation (DAM) imaging modes. We find that while the quality factors of dAFM probes may deviate by several orders of magnitude between vacuum and liquid media, their sensitivity to tip–sample forces can be remarkable similar. Furthermore, the reduction in noncontact forces and quality factors in liquids diminishes the role of feedback control in achieving high-resolution images. The theoretical findings are supported by atomic-resolution images of mica in water acquired with AM, FM and DAM under similar operating conditions.

[1]  Julio Gómez-Herrero,et al.  Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids , 2012, Beilstein journal of nanotechnology.

[2]  J. Gilman,et al.  Nanotechnology , 2001 .

[3]  Ricardo Garcia,et al.  Molecular scale energy dissipation in oligothiophene monolayers measured by dynamic force microscopy , 2009, Nanotechnology.

[4]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[5]  P. Mårtensson,et al.  Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7 x 7. , 1996, Physical review. B, Condensed matter.

[6]  K. Matsushige,et al.  Atomic-Resolution Imaging of Graphite–Water Interface by Frequency Modulation Atomic Force Microscopy , 2011 .

[7]  Takeshi Fukuma,et al.  Phase modulation atomic force microscope with true atomic resolution , 2006 .

[8]  Arvind Raman,et al.  Equivalent point-mass models of continuous atomic force microscope probes , 2007 .

[9]  Jochen Mannhart,et al.  Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor , 2004 .

[10]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[11]  Sebastian Rützel,et al.  Nonlinear dynamics of atomic–force–microscope probes driven in Lennard–Jones potentials , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[13]  T. Fukuma Subnanometer-Resolution Frequency Modulation Atomic Force Microscopy in Liquid for Biological Applications , 2009 .

[14]  R. Pérez,et al.  Mechanical Response and Energy-Dissipation Processes in Oligothiophene Monolayers Studied with First-Principles Simulations , 2010 .

[15]  Bielefeldt,et al.  Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy. , 2000, Science.

[16]  P. Olver Nonlinear Systems , 2013 .

[17]  Xin Xu,et al.  Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. , 2009, Physical review letters.

[18]  J. Mannhart,et al.  Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy , 1999 .

[19]  Arvind Raman,et al.  Cantilever dynamics in atomic force microscopy , 2008 .

[20]  Response to the “Comment on ‘Thermal frequency noise in dynamic scanning force microscopy’” [J. Appl. Phys. 110, 036107 (2011)] , 2011 .

[21]  Michel Gauthier,et al.  Interplay between nonlinearity, scan speed, damping, and electronics in frequency modulation atomic-force microscopy. , 2002, Physical review letters.

[22]  M. G. Mateu,et al.  Resolving Structure and Mechanical Properties at the Nanoscale of Viruses with Frequency Modulation Atomic Force Microscopy , 2012, PloS one.

[23]  Arvind Raman,et al.  Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy , 2007 .

[24]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[25]  Hideki Kawakatsu,et al.  Atomically resolved dynamic force microscopy operating at 4.7 MHz , 2006 .

[26]  Kei Kobayashi,et al.  Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy , 2005 .

[27]  A. Raman,et al.  Dynamics of tapping mode atomic force microscopy in liquids: Theory and experiments , 2007 .

[28]  J. Colchero,et al.  Thermal frequency noise in dynamic scanning force microscopy , 2011 .

[29]  M. Miles,et al.  High-Q dynamic force microscopy in liquid and its application to living cells. , 2001, Biophysical journal.

[30]  J. Greve,et al.  Mapping Electrostatic Forces Using Higher Harmonics Tapping Mode Atomic Force Microscopy in Liquid , 1999 .

[31]  Comment on “Thermal frequency noise in dynamic scanning force microscopy” [J. Appl. Phys. 109, 024310 (2011)] , 2011 .

[32]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[33]  Robert W. Stark,et al.  Bistability, higher harmonics, and chaos in AFM , 2010 .

[34]  M. Ohta,et al.  Role of a covalent bonding interaction in noncontact-mode atomic-force microscopy on Si(111)7×7 , 1997 .

[35]  A. Champneys,et al.  Feedback-induced instability in tapping mode atomic force microscopy: theory and experiment , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Paul D. Ashby,et al.  Gentle imaging of soft materials in solution with amplitude modulation atomic force microscopy: Q control and thermal noise , 2007 .

[37]  L. Wang,et al.  Analytical descriptions of the tapping-mode atomic force microscopy response , 1998 .

[38]  Ricardo Garcia,et al.  Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy , 2001 .

[39]  A. Raman,et al.  Origins of phase contrast in the atomic force microscope in liquids , 2009, Proceedings of the National Academy of Sciences.

[40]  M. Roukes,et al.  Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems , 2003, physics/0309075.

[41]  Harald Fuchs,et al.  How to measure energy dissipation in dynamic mode atomic force microscopy , 1999 .

[42]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[43]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[44]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[45]  H. Hölscher,et al.  Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis , 2006 .

[46]  A. Toda,et al.  Normal and lateral force investigation using magnetically activated force sensors , 2000 .

[47]  J. Kilpatrick,et al.  Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning. , 2009, The Review of scientific instruments.

[48]  Francesco Stellacci,et al.  Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. , 2010, Nature nanotechnology.

[49]  L. Nony,et al.  Stability criterions of an oscillating tip-cantilever system in dynamic force microscopy , 2001 .

[50]  Krueger,et al.  Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. , 1996, Physical review. B, Condensed matter.

[51]  Franz J Giessibl,et al.  Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes. , 2011, The Review of scientific instruments.

[52]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[53]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[54]  F. Giessibl,et al.  Physical interpretation of frequency-modulation atomic force microscopy , 2000 .