An isogeometric analysis Bézier interface element for mechanical and poromechanical fracture problems
暂无分享,去创建一个
Cv Clemens Verhoosel | Cv Clemens Verhoosel | de R René Borst | Jjc Joris Remmers | F Faisal Irzal | R. Borst | J. Remmers | C. Verhoosel | J. Remmers | F. Irzal
[1] M. Ortiz,et al. Computational modelling of impact damage in brittle materials , 1996 .
[2] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[3] J. Rots. Smeared and discrete representations of localized fracture , 1991 .
[4] Julien Réthoré,et al. A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium , 2006 .
[5] de R René Borst,et al. Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach , 1994 .
[6] Julien Réthoré,et al. A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks , 2008 .
[7] Cv Clemens Verhoosel,et al. Non-Linear Finite Element Analysis of Solids and Structures , 1991 .
[8] A. Ingraffea,et al. Numerical modeling of discrete crack propagation in reinforced and plain concrete , 1985 .
[9] A. Needleman,et al. A cohesive segments method for the simulation of crack growth , 2003 .
[10] J. Rots. Smeared and discrete representations of localized fracture , 1991 .
[11] Ted Belytschko,et al. Elastic crack growth in finite elements with minimal remeshing , 1999 .
[12] Julien Réthoré,et al. A two‐scale approach for fluid flow in fractured porous media , 2006 .
[13] Ignacio Carol,et al. Coupled HM analysis using zero‐thickness interface elements with double nodes. Part I: Theoretical model , 2008 .
[14] D. Borst,et al. A NON-LINEAR FINITE ELEMENT APPROACH FOR THE ANALYSIS OF MODE-I FREE EDGE DELAMINATION IN COMPOSITES , 1993 .
[15] Xiaopeng Xu,et al. Numerical simulations of fast crack growth in brittle solids , 1994 .
[16] T. Belytschko,et al. Extended finite element method for cohesive crack growth , 2002 .
[17] de R René Borst,et al. On the numerical integration of interface elements , 1993 .
[18] René de Borst,et al. A discrete model for the dynamic propagation of shear bands in a fluid‐saturated medium , 2007 .
[19] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[20] Ted Belytschko,et al. Arbitrary discontinuities in finite elements , 2001 .
[21] Cv Clemens Verhoosel,et al. Isogeometric finite element analysis of poroelasticity , 2013 .
[22] K. Seffen,et al. International Journal of Solids and Structures , 2015 .
[23] Cv Clemens Verhoosel,et al. The cohesive band model: a cohesive surface formulation with stress triaxiality , 2013, International Journal of Fracture.
[24] Thomas J. R. Hughes,et al. An isogeometric approach to cohesive zone modeling , 2011 .
[25] K. Bathe. Finite Element Procedures , 1995 .
[26] René de Borst,et al. A large deformation formulation for fluid flow in a progressively fracturing porous material , 2013 .
[27] Cv Clemens Verhoosel,et al. A phase-field description of dynamic brittle fracture , 2012 .
[28] Thomas J. R. Hughes,et al. An isogeometric analysis approach to gradient damage models , 2011 .
[29] R. de Borst,et al. A consistent geometrically non‐linear approach for delamination , 2002 .
[30] M. Cox. The Numerical Evaluation of B-Splines , 1972 .
[31] L. J. Sluys,et al. A new method for modelling cohesive cracks using finite elements , 2001 .
[32] Thomas J. Boone,et al. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media , 1990 .
[33] O. Allix,et al. Interlaminar interface modelling for the prediction of delamination , 1992 .
[34] Bernhard A. Schrefler,et al. Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials , 2007 .
[35] C. D. Boor,et al. On Calculating B-splines , 1972 .