A Generic Approach to Parameterize the Turbulent Energy of Single-Epoch Atmospheric Delays From InSAR Time Series

The observed phase in time series of interferometric synthetic aperture radar (InSAR) products is a superposition of various components. Differential topography, line-of-sight displacements, and differential atmospheric delays are the main contributions and need to be disentangled to derive accurate digital elevation model (DEM), deformation, or atmospherical products from InSAR. However, isolating the atmospheric component has been proven difficult as it is spatiotemporally highly dynamic and a superposition of two atmospheric states. Here, we propose an approach to parameterize the stochastic properties of the single-epoch atmospheric delay field as a way to define the atmospheric signal. We found that the atmospheric signal of a time series of interferograms can be characterized by structure functions, which can be used to isolate the single-epoch structure functions. Due to the scaling properties of the atmospheric signal, it is then possible to construct a parametric function per SAR acquisition, using two isotropic and three anisotropic parameters. In particular, the isotropic parameters for the short-distance variation and long-distance variation in atmospheric delay can be used to characterize the atmospheric signal. For a test set of 151 Sentinel-1 acquisitions, this results in an atmospheric energy range of about 10 for short-distance scales and about 50 for long-distance scales. Our parameterization demonstrates that we can describe the spatiotemporal variability of InSAR atmospheric delays, which provides a measure for atmospheric noise for individual epochs in deformation time series based on distance and azimuth.

[1]  S. Lovejoy Spectra, intermittency, and extremes of weather, macroweather and climate , 2018, Scientific Reports.

[2]  T. Wright,et al.  Statistical comparison of InSAR tropospheric correction techniques , 2015 .

[3]  Tim J. Wright,et al.  A spatially variable power law tropospheric correction technique for InSAR data , 2015 .

[4]  Ad Stoffelen,et al.  Spatial variances of wind fields and their relation to second-order structure functions and spectra , 2014 .

[5]  F. V. Leijen,et al.  Persistent Scatterer Interferometry based on geodetic estimation theory , 2014 .

[6]  Marie-Pierre Doin,et al.  Improving InSAR geodesy using Global Atmospheric Models , 2014 .

[7]  D. Schertzer,et al.  The Weather and Climate: Emergent Laws and Multifractal Cascades: Generalized scale invariance and cloud morphology , 2013 .

[8]  Thomas Hobiger,et al.  Are numerical weather model outputs helpful to reduce tropospheric delay signals in InSAR data? , 2013, Journal of Geodesy.

[9]  S. Liu,et al.  Satellite radar interferometry: Estimation of atmospheric delay , 2012 .

[10]  D. Schertzer,et al.  Joint horizontal‐vertical anisotropic scaling, isobaric and isoheight wind statistics from aircraft data , 2012 .

[11]  Franz J. Meyer,et al.  Performance Requirements for Ionospheric Correction of Low-Frequency SAR Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[12]  G. Wadge,et al.  Correction of atmospheric delay effects in radar interferometry using a nested mesoscale atmospheric model , 2010 .

[13]  Shaun Lovejoy,et al.  Towards a new synthesis for atmospheric dynamics: Space–time cascades , 2010 .

[14]  Marie-Pierre Doin,et al.  Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models , 2009 .

[15]  Ramon F. Hanssen,et al.  On the value of high-resolution weather models for atmospheric mitigation in SAR interferometry , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Rene Preusker,et al.  Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models , 2009 .

[17]  P. Teunissen Testing Theory: an introduction , 2009 .

[18]  H. Zebker,et al.  Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos , 2007 .

[19]  James Foster,et al.  Mitigating atmospheric noise for InSAR using a high resolution weather model , 2005 .

[20]  Jan-Peter Muller,et al.  Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, moderate resolution Imaging spectroradiometer (MODIS), and InSAR integration , 2005 .

[21]  W. Skamarock Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra , 2004 .

[22]  Frank Kleijer,et al.  Troposphere Modeling and Filtering for Precise GPS Leveling , 2004 .

[23]  William R. Moninger,et al.  AUTOMATED METEOROLOGICAL REPORTS FROM COMMERCIAL AIRCRAFT , 2003 .

[24]  Howard A. Zebker,et al.  Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models , 2002, IEEE Trans. Geosci. Remote. Sens..

[25]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[26]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[27]  W. Keydel,et al.  Shuttle Radar Topography Mission , 2000 .

[28]  F. Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[29]  R. Eskridge,et al.  Improved Magnus form approximation of saturation vapor pressure , 1996 .

[30]  Robert N. Treuhaft,et al.  The effect of the dynamic wet troposphere on radio interferometric measurements , 1987 .

[31]  T. VanZandt,et al.  A universal spectrum of buoyancy waves in the atmosphere , 1982 .

[32]  G. D. Thayer,et al.  An improved equation for the radio refractive index of air , 1974 .

[33]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[34]  Ernest K. Smith,et al.  The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies , 1953, Proceedings of the IRE.

[35]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  R. Hanssen,et al.  On the Value of LES Models for Evaluating Spatio-Temporal Tropospheric Variability in Multitemporal SAR Interferograms , 2022, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[38]  S. Clifford Wave Propagation in a Turbulent Medium. , 1969 .

[39]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[40]  R. Hanssen,et al.  INTERFEROMETRIC RADAR METEOROLOGY : RESOLVING THE ACQUISITION AMBIGUITY , 2022 .