Shapley-Folkman-Lyapunov theorem and Asymmetric First price auctions

Abstract In this paper non-convexity in economics has been revisited. Shapley-Folkman-Lyapunov theorem has been tested with the asymmetric auctions where bidders follow log-concave probability distributions (non-convex preferences). Ten standard statistical distributions have been used to describe the bidders’ behavior. In principle what is been tested is that equilibrium price can be achieved where the sum of large number non-convex sets is convex (approximately), so that optimization is possible. Convexity is thus very important in economics.

[1]  P. Phillips,et al.  Threshold Regression with Endogeneity , 2014 .

[2]  Kali P. Rath,et al.  The Shapley–Folkman theorem and the range of a bounded measure: an elementary and unified treatment , 2013 .

[3]  Harry J. Paarsch,et al.  Using Economic Theory to Guide Numerical Analysis: Solving for Equilibria in Models of Asymmetric First-Price Auctions , 2013 .

[4]  Martin Moskowitz,et al.  Fixed Point Theorems and Their Applications , 2013 .

[5]  Muhammad Aslam Noor,et al.  Some Iterative Methods for Solving Nonconvex Bifunction Equilibrium Variational Inequalities , 2012, J. Appl. Math..

[6]  Gadi Fibich,et al.  Numerical simulations of asymmetric first-price auctions , 2011, Games Econ. Behav..

[7]  René Kirkegaard,et al.  Asymmetric first price auctions , 2009, J. Econ. Theory.

[8]  Kin Keung Lai,et al.  Generalized Convexity and Vector Optimization , 2008 .

[9]  Jean-Francois Richard,et al.  Numerical Solutions of Asymmetric, First-Price, Independent Private Values Auctions , 2008 .

[10]  Nicholas C. Yannelis,et al.  Equilibrium theory with asymmetric information and with infinitely many commodities , 2008, J. Econ. Theory.

[11]  Shmuel Zamir,et al.  Asymmetric First-Price Auctions With Uniform Distributions: Analytic Solutions to the General Case , 2007 .

[12]  Elmar G. Wolfstetter,et al.  Bidding Behavior in Asymmetric Auctions: An Experimental Study , 2005 .

[13]  A. W. Kemp,et al.  Univariate Discrete Distributions: Johnson/Univariate Discrete Distributions , 2005 .

[14]  Paul Milgrom,et al.  Putting Auction Theory to Work , 2004 .

[15]  Gadi Fibich,et al.  Asymmetric First-Price Auctions - A Perturbation Approach , 2003, Math. Oper. Res..

[16]  Quang Vuong,et al.  Asymmetry in first-price auctions with affiliated private values , 2003 .

[17]  Patrick Bajari,et al.  Comparing competition and collusion: a numerical approach , 2001 .

[18]  Diego Moreno,et al.  On the Core of an Economy with Differential Information , 2000, J. Econ. Theory.

[19]  Nicholas C. Yannelis,et al.  Cone Conditions in General Equilibrium Theory , 2000, J. Econ. Theory.

[20]  F. Hüsseinov Characterization of spannability of functions , 1997 .

[21]  R. Starr General Equilibrium Theory: An Introduction , 1997 .

[22]  S. Bikhchandani,et al.  Competitive Equilibrium in an Exchange Economy with Indivisibilities , 1997 .

[23]  Walter Stromquist,et al.  Numerical Analysis of Asymmetric First Price Auctions , 1994 .

[24]  N. Yannelis,et al.  An elementary proof of the Knaster-Kuratowski-Mazurkiewicz-Shapley Theorem , 1993 .

[25]  Lin Zhou A simple proof of the Shapley-Folkman theorem , 1993 .

[26]  Michael Plum,et al.  Characterization and computation of nash-equilibria for auctions with incomplete information , 1992 .

[27]  Fabio Tardella,et al.  A new proof of the Lyapunov convexity theorem , 1990 .

[28]  Paul R. Milgrom,et al.  Auctions and Bidding: A Primer , 1989 .

[29]  J. Robbin,et al.  On weak continuity and the Hodge decomposition , 1987 .

[30]  R. Anderson The Second Welfare Theorem with Nonconvex Preferences , 1986 .

[31]  Kim C. Border,et al.  Fixed point theorems with applications to economics and game theory: Fixed point theorems for correspondences , 1985 .

[32]  Salim Rashid,et al.  Approximate Equilibria with Bounds Independent of Preferences , 1982 .

[33]  Robert M. Anderson,et al.  Core Theory with Strongly Convex Preferences , 1981 .

[34]  K. Prikry,et al.  Liapounoff’s theorem for nonatomic, finitely-additive, bounded, finite-dimensional, vector-valued measures , 1981 .

[35]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[36]  L. Shapley,et al.  The assignment game I: The core , 1971 .

[37]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[38]  K. Vind,et al.  EDGEWORTH-ALLOCATIONS IN AN EXCHANGE ECONOMY WITH MANY TRADERS , 1964 .

[39]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[40]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1911 .

[41]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[42]  K. Arrow,et al.  The New Palgrave Dictionary of Economics , 2020 .

[43]  Harry J. Paarsch,et al.  Investigating bid preferences at low-price, sealed-bid auctions with endogenous participation , 2009 .

[44]  J. K. Hunter,et al.  Measure Theory , 2007 .

[45]  Chaouki T. Abdallah,et al.  Nonlinear Systems Stability via Random and Quasi-Random Methods , 2006 .

[46]  Pravin Varaiya,et al.  Efficient market mechanisms and simulation-based learning for multi-agent systems , 2004 .

[47]  Hans M. Amman,et al.  Handbook of Computational Economics , 1996 .

[48]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[49]  Donald J. Brown Equilibrium analysis with non-convex technologies , 1991 .

[50]  R. McAfee,et al.  Auctions and Bidding , 1986 .

[51]  Jerry R. Green,et al.  Mathematical Analysis and Convexity with Applications to Economics , 1981 .

[52]  Singh M. Nayan,et al.  On Fixed Points , 1981 .

[53]  M. Rosenlicht Introduction to Analysis , 1970 .

[54]  R. Starr Quasi-Equilibria in Markets with Non-Convex Preferences , 1969 .

[55]  G. Seever Measures on F-spaces , 1968 .

[56]  Armando Ortega-Reichert Models for competitive bidding under uncertainty , 1967 .

[57]  Edwin Hewitt,et al.  Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable , 1965 .

[58]  R. Aumann Markets with a continuum of traders , 1964 .