Endocrine Disruptors in Aquatic Environment: Effects and Consequences on the Biodiversity of Fish and Amphibian Species

Endocrine Disruptors (EDs) are synthetic or natural chemical compounds of exogenous origin that can cause serious health damage, in the growth and reproduction of animals when released into the aquatic environment through anthropic activities. Taking into account the current impact of pollutants on aquatic biodiversity in the last years, this study aims to systematically review the relevant literature on currently known EDs, focusing on their sources, their effects, and consequences on the aquatic biota, with emphasis to fish and amphibians. About 70% of the analyzed studies report that sewage represents the major source of EDs contamination to the water environment, and more than 90% of these contaminants are associated with interference in the sexual differentiation of aquatic animals, infertility, and reduction of sperm production. In addition, the main effects caused by EDs in fish include abnormalities in the reproductive system of animals (47%), induction of vitellogenin (VTG) synthesis (20%) and mortality of the species (13%). In amphibians, the main effects caused by EDs include changes in hormonal activity (physiological functions) during the embryonic development (11%), causing changes in anatomy (33%) and behavior (11%), leading to a reduction in reproductive success (11%), as well as gonadal abnormalities (22%), hermaphroditism (33%) and other alterations in the reproductive system (45%). Finally, this report calls attention to the importance to the rational use of these substances, as well as to encourage scientific research that shows the real seriousness of these contaminations on the decline of fish and amphibian populations, showing mediating and mitigating solutions to their impacts.

[1]  M. D. Silva,et al.  Efeitos de hormônios esteroides de contraceptivos orais combinados sobre os parâmetros comportamentais de Betta splendens (Regan, 1909) , 2016 .

[2]  P. Ricci,et al.  Endocrine disruptors , 1996 .

[3]  S. Taniguchi,et al.  A multi-molecular marker assessment of organic pollution in shore sediments from the Río de la Plata Estuary, SW Atlantic. , 2015, Marine pollution bulletin.

[4]  J. Borges,et al.  Resultados preliminares do efeito da água da represa Billings na tireóide das tilápias. , 2015 .

[5]  L. S. Gregorio Efeitos da Flutamida na morfologia dos órgãos reprodutivos e fígado de Rhinella schneideri (Anura: Bufonidae) , 2015 .

[6]  Ching‐Chang Lee,et al.  Characteristics of nonylphenol and bisphenol A accumulation by fish and implications for ecological and human health. , 2015, The Science of the total environment.

[7]  D. Barceló,et al.  Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). , 2014, The Science of the total environment.

[8]  V. Toua,et al.  Acute toxicity of monocalm 400sl ( monocrotophos ) and profenalm 720ec ( profenofos ) on Oreochromis niloticus (Linnaeus, 1758) , 2014 .

[9]  M. Bícego,et al.  Sedimentary biomarkers along a contamination gradient in a human-impacted sub-estuary in Southern Brazil: a multi-parameter approach based on spatial and seasonal variability. , 2014, Chemosphere.

[10]  T. Galvão,et al.  Revisões sistemáticas da literatura: passos para sua elaboração , 2014 .

[11]  João Ramalho-Santos,et al.  p,p′-DDE activates CatSper and compromises human sperm function at environmentally relevant concentrations , 2013, Human reproduction.

[12]  Carlos Augusto de Lemos Chernicharo,et al.  Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto : revisão da literatura. , 2013 .

[13]  A. Tsatsakis,et al.  Persistent organochlorinated pesticides and mechanisms of their toxicity. , 2013, Toxicology.

[14]  J. Freitas Efeito do hormônio 17β-estradiol na gametogênese dos órgãos de Bidder e testículos e no tecido hepático em machos de Rhinella schneideri (Anura: Bufonidae) , 2013 .

[15]  H. Jarry,et al.  Effects of the natural endocrine disruptor equol on the pituitary function in adult male rats. , 2013, Toxicology.

[16]  E. Ropstad,et al.  Parental exposure to natural mixtures of POPs reduced embryo production and altered gene transcription in zebrafish embryos. , 2013, Aquatic toxicology.

[17]  S. Taboga,et al.  Prenatal testosterone exposure as a model for the study of endocrine-disrupting chemicals on the gerbil prostate , 2012, Experimental biology and medicine.

[18]  W. Kloas,et al.  Estrogens Can Disrupt Amphibian Mating Behavior , 2012, PloS one.

[19]  Hung-Suck Park,et al.  Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. , 2011, The Science of the total environment.

[20]  Z. Chang,et al.  Estrogenic Response in Male Bullfrog (Rana catesbeiana) Hepatocytes After Single or Combined Exposure to Cadmium (Cd) and 17beta-Estradiol (E2) , 2010, Bulletin of environmental contamination and toxicology.

[21]  D. Barceló,et al.  Assessing the estrogenic potency in a Portuguese wastewater treatment plant using an integrated approach. , 2010, Journal of environmental sciences.

[22]  Werner Kloas,et al.  Mate calling behavior of male South African clawed frogs (Xenopus laevis) is suppressed by the antiandrogenic endocrine disrupting compound flutamide. , 2010, General and comparative endocrinology.

[23]  Wilson F. Jardim,et al.  Sistema limpo em linha para extração em fase sólida de contaminantes emergentes em águas naturais , 2010 .

[24]  D Barceló,et al.  Analysis of phytoestrogens, progestogens and estrogens in environmental waters from Rio de Janeiro (Brazil). , 2009, Environment international.

[25]  J. Salierno,et al.  17α‐Ethinylestradiol alters reproductive behaviors, circulating hormones, and sexual morphology in male fathead minnows (Pimephales promelas) , 2009, Environmental toxicology and chemistry.

[26]  Denise Tolfo Silveira,et al.  Métodos de pesquisa , 2009 .

[27]  A. Wagener,et al.  Geochemistry of fecal sterols in a contaminated estuary in southeastern Brazil , 2008 .

[28]  L. Guillette,et al.  Agriculture Alters Gonadal Form and Function in the Toad Bufo marinus , 2008, Environmental health perspectives.

[29]  Taisen Iguchi,et al.  Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. , 2008, Aquatic toxicology.

[30]  J. Warnken,et al.  Degradation and responses of coprostanol and selected sterol biomarkers in sediments to a simulated major sewage pollution event: A microcosm experiment under sub-tropical estuarine conditions , 2008 .

[31]  D. R. Valério,et al.  Exposição ambiental a desreguladores endócrinos: alterações na homeostase dos hormônios esteroidais e tireoideanos , 2008 .

[32]  W. F. Jardim,et al.  Interferentes endócrinos no ambiente , 2007 .

[33]  M. Dezotti,et al.  Desreguladores endócrinos no meio ambiente: efeitos e conseqüências , 2007 .

[34]  R. Knapp,et al.  Multiple stressors and amphibian declines: dual impacts of pesticides and fish on yellow-legged frogs. , 2007, Ecological applications : a publication of the Ecological Society of America.

[35]  E. M. Vieira,et al.  Poluentes Emergentes como Desreguladores Endócrinos , 2007 .

[36]  Reis Filho,et al.  Fármacos, ETEs e corpos hídricos , 2006 .

[37]  M. Gamal El-Din,et al.  Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review , 2006 .

[38]  E. M. Vieira,et al.  Hormônios sexuais estrógenos: contaminantes bioativos , 2006 .

[39]  J. Giesy,et al.  Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. , 2006, Aquatic toxicology.

[40]  C.F.B Haddad,et al.  ESTRATÉGIAS E MODOS REPRODUTIVOS DE ANUROS (AMPHIBIA) EM UMA POÇA PERMANENTE NA SERRA DE PARANAPIACABA , 2005 .

[41]  Damià Barceló,et al.  Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments , 2004 .

[42]  T. Romeo,et al.  Evaluation of ecotoxicological effects of endocrine disrupters during a four-year survey of the Mediterranean population of swordfish (Xiphias gladius). , 2004, Marine environmental research.

[43]  Ana M Soto,et al.  Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow. , 2003, Environmental health perspectives.

[44]  M. Dezotti,et al.  Fármacos no meio ambiente , 2003 .

[45]  J. H. Wyk,et al.  The Effects of Anti-Androgenic and Estrogenic Disrupting Contaminants on Breeding Gland (Nuptial Pad) Morphology, Plasma Testosterone Levels, and Plasma Vitellogenin Levels in Male Xenopus laevis (African Clawed Frog) , 2003, Archives of environmental contamination and toxicology.

[46]  I. Davies,et al.  Effects of sewage effluent and ethynyl oestradiol upon molecular markers of oestrogenic exposure, maturation and reproductive success in the sand goby (Pomatoschistus minutus, Pallas). , 2003, Aquatic toxicology.

[47]  R. Samperi,et al.  Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. , 2003, The Science of the total environment.

[48]  Kelly Haston,et al.  Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. , 2002, Environmental health perspectives.

[49]  D R Dietrich,et al.  Determination of vitellogenin kinetics in male fathead minnows (Pimephales promelas). , 2002, Toxicology letters.

[50]  D. Wake,et al.  Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Braunbeck,et al.  Decline in reproductive success, sex reversal, and developmental alterations in Japanese medaka (Oryzias latipes) after continuous exposure to octylphenol. , 2002, Ecotoxicology and environmental safety.

[52]  K. N. Baer Environmental Endocrine Disrupters: An Evolutionary Perspective , 2001 .

[53]  J. Sumpter,et al.  Exposure of juvenile roach (Rutilus rutilus) to treated sewage effluent induces dose-dependent and persistent disruption in gonadal duct development. , 2001, Environmental science & technology.

[54]  D. Barceló,et al.  Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain) , 2000 .

[55]  L. Folmar,et al.  Comparative estrogenicity of estradiol, ethynyl estradiol and diethylstilbestrol in an in vivo, male sheepshead minnow (Cyprinodon variegatus), vitellogenin bioassay. , 2000, Aquatic toxicology.

[56]  L. Guillette ENDOCRINE-DISRUPTING CONTAMINANTS AND HORMONE DYNAMICS: LESSONS FROM WILDLIFE , 2000 .

[57]  Armando Meyer,et al.  Estarão alguns grupos populacionais brasileiros sujeitos à ação de disruptores endócrinos , 1999 .

[58]  A. Hontela,et al.  Effects ofin VitroExposures to Cadmium, Mercury, Zinc, and 1-(2-Chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane on Steroidogenesis by Dispersed Interrenal Cells of Rainbow Trout (Oncorhynchus mykiss) , 1999 .

[59]  Roy S. Thompson,et al.  Adverse reproductive effects in male fathead minnows (Pimephales promelas) exposed to environmentally relevant concentrations of the natural oestrogens, oestradiol and oestrone , 1998 .

[60]  W. Hartley,et al.  Gonadal development in Japanese medaka (Oryzias latipes) exposed to 17 β-estradiol , 1998 .

[61]  L. Trueb,et al.  Biology of Amphibians , 1986 .