Factorization of generalized holomorphic curve and homogeneity of operators
暂无分享,去创建一个
[1] R. Douglas. Banach Algebra Techniques in Operator Theory , 1972 .
[2] Sergei Treil,et al. Similarity of n‐hypercontractions and backward Bergman shifts , 2013, J. Lond. Math. Soc..
[3] J. Agler. The Arveson Extension Theorem and coanalytic models , 1982 .
[4] Similarity of Operators in the Bergman Space Setting , 2012, 1203.4983.
[5] C. Foias,et al. Harmonic Analysis of Operators on Hilbert Space , 1970 .
[6] Chunlan Jiang,et al. K-group and similarity classification of operators , 2005 .
[7] S. Treil,et al. Analytic projections, Corona problem and geometry of holomorphic vector bundles , 2007, math/0702756.
[8] Similarity of analytic Toeplitz operators on the Bergman spaces , 2010 .
[9] S. Treil,et al. Similarity of operators and geometry of eigenvector bundles , 2007, 0712.0114.
[10] A. Korányi,et al. A Classification of Homogeneous Operators in the Cowen-Douglas Class , 2009, 0901.1233.
[11] Chunlan Jiang,et al. Similarity classification of holomorphic curves , 2007 .
[12] Hyun-Kyoung Kwon,et al. The trace of the curvature determines similarity , 2017 .
[13] Curvature and the backward shift operators , 1984 .
[14] The orbit of a bounded operator under the Möbius group modulo similarity equivalence , 2018, 1811.05428.
[15] Bhaskar Bagchi,et al. The homogeneous shifts , 2003 .
[16] Trace Formulae for Curvature of Jet Bundles over Planar Domains , 2013, 1311.2171.
[17] Ronald G. Douglas,et al. Complex geometry and operator theory , 1978 .