Factorization of generalized holomorphic curve and homogeneity of operators

[1]  R. Douglas Banach Algebra Techniques in Operator Theory , 1972 .

[2]  Sergei Treil,et al.  Similarity of n‐hypercontractions and backward Bergman shifts , 2013, J. Lond. Math. Soc..

[3]  J. Agler The Arveson Extension Theorem and coanalytic models , 1982 .

[4]  Similarity of Operators in the Bergman Space Setting , 2012, 1203.4983.

[5]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[6]  Chunlan Jiang,et al.  K-group and similarity classification of operators , 2005 .

[7]  S. Treil,et al.  Analytic projections, Corona problem and geometry of holomorphic vector bundles , 2007, math/0702756.

[8]  Similarity of analytic Toeplitz operators on the Bergman spaces , 2010 .

[9]  S. Treil,et al.  Similarity of operators and geometry of eigenvector bundles , 2007, 0712.0114.

[10]  A. Korányi,et al.  A Classification of Homogeneous Operators in the Cowen-Douglas Class , 2009, 0901.1233.

[11]  Chunlan Jiang,et al.  Similarity classification of holomorphic curves , 2007 .

[12]  Hyun-Kyoung Kwon,et al.  The trace of the curvature determines similarity , 2017 .

[13]  Curvature and the backward shift operators , 1984 .

[14]  The orbit of a bounded operator under the Möbius group modulo similarity equivalence , 2018, 1811.05428.

[15]  Bhaskar Bagchi,et al.  The homogeneous shifts , 2003 .

[16]  Trace Formulae for Curvature of Jet Bundles over Planar Domains , 2013, 1311.2171.

[17]  Ronald G. Douglas,et al.  Complex geometry and operator theory , 1978 .