Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations.

We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile, no significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril.

[1]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[2]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[3]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[4]  T. Yui,et al.  Swelling behavior of the cellulose Ibeta crystal models by molecular dynamics. , 2006, Carbohydrate research.

[5]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[6]  William L. Jorgensen,et al.  Gas‐phase and liquid‐state properties of esters, nitriles, and nitro compounds with the OPLS‐AA force field , 2001, J. Comput. Chem..

[7]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[8]  William L. Jorgensen,et al.  OPLS ALL-ATOM MODEL FOR AMINES : RESOLUTION OF THE AMINE HYDRATION PROBLEM , 1999 .

[9]  G. P. Johnson,et al.  Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Ibeta. , 2008, Biomacromolecules.

[10]  Louis Godbout,et al.  Solid self-assembled films of cellulose with chiral nematic order and optically variable properties , 1998 .

[11]  L. Berglund,et al.  Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. , 2008, The journal of physical chemistry. B.

[12]  M. Himmel,et al.  Computer simulation studies of microcrystalline cellulose Iβ , 2006 .

[13]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[14]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[15]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[16]  J. Sugiyama,et al.  On the polarity of cellulose in the cell wall of Valonia , 1994, Planta.

[17]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[18]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[19]  J. Putaux,et al.  The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. , 2008, Biomacromolecules.

[20]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[21]  Jenni Sievänen,et al.  Small-angle x-ray scattering study on the structure of microcrystalline and nanofibrillated cellulose , 2010 .

[22]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[23]  D. Gray,et al.  Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist , 1997, Cellulose.

[24]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[25]  J. Sugiyama,et al.  Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall , 1991 .

[26]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[27]  G. P. Johnson,et al.  Cellulose and the twofold screw axis: modeling and experimental arguments , 2009 .