The effect of transition metal carbides MeC (Me = Ti, Zr, Nb, Ta, and W) on mechanical properties of B4C ceramics fabricated via pressureless sintering

[1]  Yihua Huang,et al.  Microstructure and mechanical properties of B4C–TiB2–SiC composites fabricated by spark plasma sintering , 2020 .

[2]  F. Toptan,et al.  Corrosion and Tribocorrosion Behavior of Ti-B4C Composites Joined with TiCuNi Brazing Alloy , 2019, Journal of Materials Engineering and Performance.

[3]  Z. Balalan,et al.  Microstructure and mechanical properties of Cu-B4C and CuAl-B4C composites produced by hot pressing , 2019, Rare Metals.

[4]  Z. Zhong,et al.  On the use of Ti Si eutectic alloy as a novel sintering aid for B4C TiB2SiC ceramic composites , 2019, Ceramics International.

[5]  Huang-Chuan Chen,et al.  Densification behavior and mechanical properties of spark plasma reaction sintered ZrB2–ZrC-B4C ceramics from B4C-Zr system , 2019, Ceramics International.

[6]  K. Kondoh,et al.  Effect of graphite content on properties of B4C‐W2B5 ceramic composites by in situ reaction of B‐Gr‐WC , 2018 .

[7]  I. Bogomol,et al.  Production and Properties of B4C–TiB2 Composites with Isotropic Eutectic Microstructure , 2018, Powder Metallurgy and Metal Ceramics.

[8]  Chao Wu,et al.  Micro-structure, mechanical properties and comparison of monolithic and laminated Ti-B4C composite with Al doped , 2018 .

[9]  Yujun Zhang,et al.  Fabrication and properties of in-situ pressureless-sintered ZrB2/B4C composites , 2017 .

[10]  O. Yucel,et al.  Thermochemical modeling and experimental studies on the formation of TiB2 through carbothermic synthesis from TiO2 and B2O3 or B4C , 2017 .

[11]  Z. Zhong,et al.  High toughness and electrical discharge machinable B4C-TiB2-SiC composites fabricated at low sintering temperature , 2017 .

[12]  S. N. Perevislov,et al.  Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C , 2017, Inorganic Materials.

[13]  H. Che,et al.  Densification behaviour and mechanical properties of B4C–SiC intergranular/intragranular nanocomposites fabricated through spark plasma sintering assisted by mechanochemistry , 2017 .

[14]  D. Kovacheva,et al.  Synthesis of Boron Carbide by Reactive‐Pulsed Electric Current Sintering in the Presence of Tungsten Boride , 2016 .

[15]  Z. Xu,et al.  Preparation of B4C-ZrB2 Laminated Composites by Non-Aqueous Tape Casting and Hot-Press Sintering , 2016 .

[16]  Liu Changxia,et al.  Effect of mechanical properties and impact angles on erosion behavior of B4C/TiB2 matrix ceramic nozzle materials , 2016 .

[17]  A. Domínguez-Rodríguez,et al.  High-temperature plastic deformation of spark plasma sintered boron carbide-based composites: The case study of B4C–SiC with/without graphite (g) , 2016 .

[18]  H. Baharvandi,et al.  Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites , 2015 .

[19]  S. Chakraborty,et al.  Mechanical, Tribological, and Thermal Properties of Hot-Pressed ZrB2-B4C Composite , 2015 .

[20]  K. Sairam,et al.  Hot-pressing of MoSi2 reinforced B4C composites , 2014 .

[21]  L. Jia,et al.  Size effect of B4C powders on metallurgical reaction and resulting tensile properties of Ti matrix composites by in-situ reaction from Ti–B4C system under a relatively low temperature , 2014 .

[22]  Y. Sakka,et al.  In Situ Fabrication of B4C–NbB2 Eutectic Composites by Spark–Plasma Sintering , 2014 .

[23]  T. Nishi,et al.  Characterization of solidified melt among materials of UO2 fuel and B4C control blade , 2014 .

[24]  Hao Wang,et al.  Preparation of B4C–SiC composite ceramics through hot pressing assisted by mechanical alloying , 2013 .

[25]  K. Vanmeensel,et al.  Spark Plasma Sintering of Superhard B4C–ZrB2 Ceramics by Carbide Boronizing , 2013 .

[26]  S. Meng,et al.  Study on ZrC-20vol.%SiCw Ultrahigh Temperature Ceramics by Hot Pressing , 2012 .

[27]  W. Tuan,et al.  Toughening and strengthening zirconia through the addition of a transient solid solution additive , 2012 .

[28]  R. Haber,et al.  Boron Carbide: Structure, Properties, and Stability under Stress , 2011 .

[29]  S. Nahm,et al.  Effect of B4C Addition on the Microstructures and Mechanical Properties of ZrB2-SiC Ceramics , 2010 .

[30]  Moshe P. Dariel,et al.  Microstructural evolution during the infiltration of boron carbide with molten silicon , 2010 .

[31]  Ruan Hong-qiang Properties of B_4C Ceramics Prepared by Pressureless Sintering , 2010 .

[32]  X. Xiang-xin Microstructure and properties of C-SiC-B_4C composites prepared by coating processing , 2009 .

[33]  J. Zorzi,et al.  Hardness and wear resistance of B4C ceramics prepared with several additives , 2005 .

[34]  S. Kanzaki,et al.  Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering , 2003 .

[35]  S. Kanzaki,et al.  Densification behaviour and mechanical properties of pressureless-sintered B4C–CrB2 ceramics , 2002 .

[36]  H. Awaji,et al.  Mechanisms of toughening and strengthening in ceramic-based nanocomposites , 2002 .

[37]  Jianxin Deng,et al.  Microstructure and mechanical properties of hot-pressed B4C/(W,Ti)C ceramic composites , 2002 .

[38]  Nathalie Vast,et al.  Atomic structure and vibrational properties of icosahedral α-boron and B4C boron carbide , 2000 .

[39]  G. With High temperature fracture of boron carbide: experiments and simple theoretical models , 1984 .

[40]  F. W. Vahldiek Electrical resistivity, elastic modulus, and debye temperature of titanium diboride , 1967 .