Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits

A new benchmarking of beyond-CMOS exploratory devices for logic integrated circuits is presented. It includes new devices with ferroelectric, straintronic, and orbitronic computational state variables. Standby power treatment and memory circuits are included. The set of circuits is extended to sequential logic, including arithmetic logic units. The conclusion that tunneling field-effect transistors are the leading low-power option is reinforced. Ferroelectric transistors may present an attractive option with faster switching delay. Magnetoelectric effects are more energy efficient than spin transfer torque, but the switching speed of magnetization is a limitation. This article enables a better focus on promising beyond-CMOS exploratory devices.

[1]  E. Tutuc,et al.  Bilayer Pseudospin Field-Effect Transistor: Applications to Boolean Logic , 2010, IEEE Transactions on Electron Devices.

[2]  Qin Zhang,et al.  Low-Voltage Tunnel Transistors for Beyond CMOS Logic , 2010, Proceedings of the IEEE.

[3]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[4]  Jonathan Z. Sun,et al.  Spin angular momentum transfer in current-perpendicular nanomagnetic junctions , 2006, IBM J. Res. Dev..

[5]  J. Katine,et al.  Time-resolved reversal of spin-transfer switching in a nanomagnet. , 2004, Physical review letters.

[6]  D. Esseni,et al.  Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor , 2013, 1312.2557.

[8]  Paul J. McWhorter,et al.  Physics of the ferroelectric nonvolatile memory field effect transistor , 1992 .

[9]  Dmitri E. Nikonov,et al.  Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. , 2011, Physical review letters.

[10]  Ian A. Young,et al.  Design of Low Voltage Tunneling-FET Logic Circuits Considering Asymmetric Conduction Characteristics , 2014, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[11]  Dmitri E. Nikonov,et al.  Benchmarking spintronic logic devices based on magnetoelectric oxides , 2014 .

[12]  Michael L. Dertouzos,et al.  Threshold Logic: A Synthesis Approach , 1965 .

[13]  Ian A. Young,et al.  Source/Drain Doping Effects and Performance Analysis of Ballistic III-V n-MOSFETs , 2015, IEEE Journal of the Electron Devices Society.

[14]  Yoichi Shiota,et al.  Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. , 2011, Nature materials.

[15]  Ralph K. Cavin,et al.  The quest for the next information processing technology , 2008 .

[16]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[17]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[18]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[19]  Gong Gu,et al.  SymFET: A Proposed Symmetric Graphene Tunneling Field-Effect Transistor , 2012, IEEE Transactions on Electron Devices.

[20]  Chi H. Lee,et al.  Ultrafast polarization switching in thin-film ferroelectrics , 2004 .

[21]  Mark Y. Liu,et al.  A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size , 2014, 2014 IEEE International Electron Devices Meeting.

[22]  Kaushik Roy,et al.  PETE: A device/circuit analysis framework for evaluation and comparison of charge based emerging devices , 2009, 2009 10th International Symposium on Quality Electronic Design.

[23]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[24]  Supriyo Datta,et al.  Non-volatile spin switch for Boolean and non-Boolean logic , 2012 .

[25]  D. Nikonov,et al.  Spin gain transistor in ferromagnetic semiconductors-the semiconductor Bloch-equations approach , 2003, IEEE Transactions on Nanotechnology.

[26]  C. Binek,et al.  Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics , 2010, 1004.3763.

[27]  C. Binek,et al.  Robust isothermal electric control of exchange bias at room temperature. , 2010, Nature materials.

[28]  David Harris,et al.  CMOS VLSI Design: A Circuits and Systems Perspective , 2004 .

[29]  Dennis M. Newns,et al.  A low-voltage high-speed electronic switch based on piezoelectric transduction , 2012 .

[30]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[31]  J. Appenzeller,et al.  Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. , 2014, ACS nano.

[32]  Lawrence T. Pileggi,et al.  mLogic: Ultra-low voltage non-volatile logic circuits using STT-MTJ devices , 2012, DAC Design Automation Conference 2012.

[33]  Yu Cao,et al.  Exploring sub-20nm FinFET design with Predictive Technology Models , 2012, DAC Design Automation Conference 2012.

[34]  Siddharth Rajan,et al.  A heterojunction modulation-doped Mott transistor , 2011, 1109.5299.

[35]  C. Ross,et al.  Low Energy Magnetic Domain Wall Logic in Short, Narrow, Ferromagnetic Wires , 2012, IEEE Magnetics Letters.

[36]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[37]  George Bourianoff,et al.  The Future of Nanocomputing , 2003, Computer.

[38]  Zhaohao Wang,et al.  An overview of spin-based integrated circuits , 2014, 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC).

[39]  D. E. Nikonov,et al.  Uniform methodology for benchmarking beyond-CMOS logic devices , 2012, 2012 International Electron Devices Meeting.

[40]  Wolfgang Fichtner,et al.  Atomistic treatment of interface roughness in Si nanowire transistors with different channel orientations , 2007 .

[41]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.