暂无分享,去创建一个
[1] Александр Семенович Холево,et al. Квантовые теоремы кодирования@@@Quantum coding theorems , 1998 .
[2] Michael D. Westmoreland,et al. Optimal signal ensembles , 1999, quant-ph/9912122.
[3] Christopher King. Maximal p-norms of entanglement breaking channels , 2003, Quantum Inf. Comput..
[4] J. Wolfowitz. The coding of messages subject to chance errors , 1957 .
[5] Naresh Sharma,et al. Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.
[6] M. Ruskai,et al. Entanglement Breaking Channels , 2003, quant-ph/0302031.
[7] A. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .
[8] Naresh Sharma,et al. On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.
[9] P. Shor. Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.
[10] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[11] C. H. Bennett,et al. Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.
[12] Christopher King,et al. Properties of Conjugate Channels with Applications to Additivity and Multiplicativity , 2005 .
[13] M. Hastings. Superadditivity of communication capacity using entangled inputs , 2009 .
[14] Suguru Arimoto,et al. On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.
[15] S. Wehner,et al. A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.
[16] A. Holevo. Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information theory , 2006 .
[17] R. Werner,et al. On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.
[18] Michael D. Westmoreland,et al. Sending classical information via noisy quantum channels , 1997 .
[19] C. King. Additivity for unital qubit channels , 2001, quant-ph/0103156.
[20] Milán Mosonyi,et al. On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.
[21] Serge Fehr,et al. On quantum R\'enyi entropies: a new definition, some properties and several conjectures , 2013 .
[22] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.
[23] S. Verdú,et al. Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[24] Nilanjana Datta,et al. ADDITIVITY FOR TRANSPOSE DEPOLARIZING CHANNELS , 2004 .
[25] Tomohiro Ogawa,et al. Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.
[26] C. King. The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.
[27] Christopher King. An application of the Lieb-Thirring inequality in quantum information theory , 2006 .
[28] R. Sibson. Information radius , 1969 .
[29] I. Csiszár. Generalized Cutoff Rates and Renyi's Information Measures , 1993, Proceedings. IEEE International Symposium on Information Theory.
[30] Serge Fehr,et al. On the Conditional Rényi Entropy , 2014, IEEE Transactions on Information Theory.
[31] M. Fukuda. Extending additivity from symmetric to asymmetric channels , 2005, quant-ph/0505022.