Strong converse for the classical capacity of entanglement-breaking channels

Mark M. Wilde, Andreas Winter, 3, 4 and Dong Yang 5 Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA ICREA – Institucio Catalana de Recerca i Estudis Avancats, Pg. Lluis Companys 23, ES-08010 Barcelona, Spain Fisica Teorica: Informacio i Fenomens Quantics, Universitat Autonoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom Laboratory for Quantum Information, China Jiliang University, Hangzhou, Zhejiang 310018, China

[1]  Александр Семенович Холево,et al.  Квантовые теоремы кодирования@@@Quantum coding theorems , 1998 .

[2]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[3]  Christopher King Maximal p-norms of entanglement breaking channels , 2003, Quantum Inf. Comput..

[4]  J. Wolfowitz The coding of messages subject to chance errors , 1957 .

[5]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[6]  M. Ruskai,et al.  Entanglement Breaking Channels , 2003, quant-ph/0302031.

[7]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[8]  Naresh Sharma,et al.  On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.

[9]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[10]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[11]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[12]  Christopher King,et al.  Properties of Conjugate Channels with Applications to Additivity and Multiplicativity , 2005 .

[13]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[14]  Suguru Arimoto,et al.  On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[15]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[16]  A. Holevo Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information theory , 2006 .

[17]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[18]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[19]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[20]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[21]  Serge Fehr,et al.  On quantum R\'enyi entropies: a new definition, some properties and several conjectures , 2013 .

[22]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[23]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  Nilanjana Datta,et al.  ADDITIVITY FOR TRANSPOSE DEPOLARIZING CHANNELS , 2004 .

[25]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[26]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[27]  Christopher King An application of the Lieb-Thirring inequality in quantum information theory , 2006 .

[28]  R. Sibson Information radius , 1969 .

[29]  I. Csiszár Generalized Cutoff Rates and Renyi's Information Measures , 1993, Proceedings. IEEE International Symposium on Information Theory.

[30]  Serge Fehr,et al.  On the Conditional Rényi Entropy , 2014, IEEE Transactions on Information Theory.

[31]  M. Fukuda Extending additivity from symmetric to asymmetric channels , 2005, quant-ph/0505022.