Image-based robot task planning and control using a compact visual representation

We present an approach for the design and control of both reflexive and purposive visual tasks. The approach is based on the bidimensional appearance of the objects in the environment and explicitly takes into account independent object motions. A linear model of camera-object interaction is embedded in the control scheme, which dramatically simplifies visual analysis and control by reducing the size of visual representation. We describe the implementation of three visual tasks of increasing complexity, obtained with the proposed scheme and based on the active contour analysis and polynomial planning of image contour transformations. Both simulations and real-time experiments with a robotic eye-in-hand configuration are discussed, validating the approach in terms of robustness and applicability to visual navigation, active exploration and perception, and human-robot interaction.

[1]  Bernard Espiau,et al.  Effect of Camera Calibration Errors on Visual Servoing in Robotics , 1993, ISER.

[2]  James L. Crowley,et al.  Integration and control of reactive visual processes , 1994, Robotics Auton. Syst..

[3]  Minoru Asada,et al.  Versatile visual servoing without knowledge of true Jacobian , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[4]  Jake K. Aggarwal,et al.  On the computation of motion from sequences of images-A review , 1988, Proc. IEEE.

[5]  Paolo Dario,et al.  Affine visual servoing: a framework for relative positioning with a robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[6]  Koichi Hashimoto,et al.  Visual Servoing: Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback , 1993 .

[7]  James S. Albus,et al.  Brains, behavior, and robotics , 1981 .

[8]  Peter K. Allen,et al.  Trajectory filtering and prediction for automated tracking and grasping of a moving object , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[9]  Fadi Dornaika,et al.  Object pose: links between paraperspective and perspective , 1995, Proceedings of IEEE International Conference on Computer Vision.

[10]  Giulio Sandini,et al.  Active Tracking Strategy for Monocular Depth Inference over Multiple Frames , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Roberto Cipolla,et al.  Visual robot guidance from uncalibrated stereo , 1995 .

[12]  Sven J. Dickinson,et al.  Active Object Recognition Integrating Attention and Viewpoint Control , 1997, Comput. Vis. Image Underst..

[13]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[14]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[15]  Joseph L. Mundy,et al.  Projective geometry for machine vision , 1992 .

[16]  Andrew Blake,et al.  Visual guidance for robot motion , 1991 .

[17]  C. S. George Lee,et al.  Weighted selection of image features for resolved rate visual feedback control , 1991, IEEE Trans. Robotics Autom..

[18]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[19]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[20]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .