Low-observable target detection in sea clutter based on the adaptive 3D-IFS algorithm

[1]  Tamás Szirányi,et al.  Flying target detection and recognition by feature fusion , 2012 .

[2]  Liao Wenlin,et al.  高精密光学鏡のイオンビームフィギュアリングでの補正性能解析と加工誤差制御 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2012 .

[3]  T. Jian,et al.  Novel Range-Spread Target Detectors in Non-Gaussian Clutter , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Graham R. Martin,et al.  An Affine Symmetric Image Model and Its Applications , 2010, IEEE Transactions on Image Processing.

[5]  A. Asensio-Lopez,et al.  Application of the Radon transform to detect small-targets in sea clutter , 2009 .

[6]  Guan Jian Target Detection in Sea Clutter Based on Fractal Self-affine Prediction , 2009 .

[7]  Ma Li Error Analysis for Fractal Interpolation Functions Based on the Changes of Vertical Scaling Factors , 2009 .

[8]  Hong-Yong Wang,et al.  Error analysis for bivariate fractal interpolation functions generated by 3-D perturbed iterated function systems , 2008, Comput. Math. Appl..

[9]  Shiv Dutt Joshi,et al.  Variable Step-Size LMS Algorithm for Fractal Signals , 2008, IEEE Transactions on Signal Processing.

[10]  S. Sinha,et al.  A Self-Affine Fractal Multiband Antenna , 2007, IEEE Antennas and Wireless Propagation Letters.

[11]  He Tao,et al.  Prediction of chaotic time series based on fractal self-affinity , 2007 .

[12]  Xiong Gang Chaotic Prediction Method Based on Self-affine of Fraction , 2004 .

[13]  F. Berizzi,et al.  Scattering coefficient evaluation from a two-dimensional sea fractal surface , 2002 .

[14]  David S. Mazel Representation of discrete sequences with three-dimensional iterated function systems , 1994, IEEE Trans. Signal Process..

[15]  Monson H. Hayes,et al.  Using iterated function systems to model discrete sequences , 1992, IEEE Trans. Signal Process..

[16]  Michael F. Barnsley,et al.  Fractal functions and interpolation , 1986 .

[17]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[18]  S. A. Kramer Doppler and acceleration tolerances of high-gain, wideband linear FM correlation sonars , 1967 .