Interfacial Chemical Bond and Oxygen Vacancy‐Enhanced In2O3/CdSe‐DETA S‐scheme Heterojunction for Photocatalytic CO2 Conversion

[1]  Jingjing Wei,et al.  Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction , 2022, Nature Communications.

[2]  Simin Li,et al.  Interfacial C-S bonds of g-C3N4/Bi19Br3S27 S-scheme heterojunction for enhanced photocatalytic CO2 reduction. , 2022, Chemistry.

[3]  Chen Cao,et al.  Tuning Metal-Free Hierarchical Boron Nitride-like Catalyst for Enhanced Photocatalytic CO2 Reduction Activity , 2022, ACS Catalysis.

[4]  A. Mohamed,et al.  Toward Excellence in Photocathode Engineering for Photoelectrochemical CO2 Reduction: Design Rationales and Current Progress , 2022, Advanced Energy Materials.

[5]  Jianzhuang Jiang,et al.  Hydrogen-Bonded Organic Framework Ultrathin Nanosheets for Efficient Visible Light Photocatalytic CO2 Reduction. , 2022, Angewandte Chemie.

[6]  Yu‐Fei Song,et al.  VO4 -Modified Layered Double Hydroxides Nanosheets for Highly Selective Photocatalytic CO2 Reduction to C1 Products. , 2022, Small.

[7]  X. Lou,et al.  Implanting CoOx Clusters on Ordered Macroporous ZnO Nanoreactors for Efficient CO2 Photoreduction , 2022, Advanced materials.

[8]  Zeyan Wang,et al.  Low-Coordination Single Au Atoms on Ultrathin ZnIn2S4 Nanosheets for Selective Photocatalytic CO2 Reduction towards CH4. , 2022, Angewandte Chemie.

[9]  Haozhi Wang,et al.  Atomically Dispersed Indium-Copper Dual-Metal Active Sites Promoting C-C Coupling for CO2 Photoreduction to Ethanol. , 2022, Angewandte Chemie.

[10]  Jiaguo Yu,et al.  Cooperative Coupling of H2O2 Production and Organic Synthesis over a Floatable Polystyrene‐Sphere‐Supported TiO2/Bi2O3 S‐Scheme Photocatalyst , 2022, Advanced materials.

[11]  Yang Qu,et al.  Z‐scheme Heterojunction Photocatalyst Based on Lanthanum Single‐Atom Anchored on Black Phosphorus for Regulating Surface Active Sites, therefore Enhancing Photocatalytic CO2 Reduction with ≈100% CO Selectivity , 2022, Advanced Functional Materials.

[12]  S. Yang,et al.  Accelerating photogenerated charge kinetics via the g-C3N4 Schottky junction for enhanced visible-light-driven CO2 reduction , 2022, Applied Catalysis B: Environmental.

[13]  S. Yin,et al.  Oxygen Vacancy and Van Der Waals Heterojunction Modulated Interfacial Chemical Bond Over Mo2c/Bi4o5br2 for Boosting Photocatalytic Co2 Reduction , 2022, SSRN Electronic Journal.

[14]  Yang Wang,et al.  Nanosheet-Engineered NH2-MIL-125 with Highly Active Facets for Enhanced Solar CO2 Reduction , 2022, ACS Catalysis.

[15]  Hua-ming Li,et al.  Excited Electron‐Rich Bi(3–x)+ Sites: A Quantum Well‐Like Structure for Highly Promoted Selective Photocatalytic CO2 Reduction Performance , 2022, Advanced Functional Materials.

[16]  Lin Zhao,et al.  Thin In-Plane In2 O3 /ZnIn2 S4 Heterostructure Formed by Topological-Atom-Extraction: Optimal Distance and Charge Transfer for Effective CO2 Photoreduction. , 2022, Small.

[17]  S. Stupp,et al.  Selective visible-light photocatalysis of acetylene to ethylene using a cobalt molecular catalyst and water as a proton source , 2022, Nature Chemistry.

[18]  Zhifu Liu,et al.  Oxygen Vacancy Induced Boosted Visible‐Light Driven Photocatalytic CO2 Reduction and Electrochemical Water Oxidation Over CuCo‐ZIF@Fe2O3@CC Architecture , 2022, Small methods.

[19]  Xu‐Bing Li,et al.  Reductive Carbon-Carbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots. , 2022, Angewandte Chemie.

[20]  Junwang Tang,et al.  Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light , 2022, Nature Communications.

[21]  Dongyun Chen,et al.  Ni–Co Bimetallic Hydroxide Nanosheet Arrays Anchored on Graphene for Adsorption‐Induced Enhanced Photocatalytic CO2 Reduction , 2022, Advanced materials.

[22]  G. Dawson,et al.  Branch-like Cd Zn1-Se/Cu2O@Cu step-scheme heterojunction for CO2 photoreduction , 2022, Materials Today Physics.

[23]  Hongwei Huang,et al.  Solar Energy Catalysis , 2022, Angewandte Chemie.

[24]  M. Jaroniec,et al.  Non-Noble Plasmonic Metal-Based Photocatalysts. , 2022, Chemical reviews.

[25]  E. Waclawik,et al.  Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2 , 2022, Nature Communications.

[26]  Tianfu Liu,et al.  Engineering Hierarchical Architecture of Metal-Organic Frameworks for Highly Efficient Overall CO2 Photoreduction. , 2022, Small.

[27]  R. Yu,et al.  Semicrystalline SrTiO3‐Decorated Anatase TiO2 Nanopie as Heterostructure for Efficient Photocatalytic Hydrogen Evolution , 2022, Small methods.

[28]  Xiaosheng Tang,et al.  Synthesis of Stable Lead-Free Cs3 Sb2 (Brx I1- x )9 (0 ≤ x ≤ 1) Perovskite Nanoplatelets and Their Application in CO2 Photocatalytic Reduction. , 2022, Small.

[29]  J. Gascón,et al.  Hole utilization in solar hydrogen production , 2022, Nature Reviews Chemistry.

[30]  Haozhi Wang,et al.  Chlorine Tailored P-D Blocks Dual-Metal Atomic Catalyst for Efficient Photocatalytic Co2 Reduction , 2022, SSRN Electronic Journal.

[31]  A. Mohamed,et al.  Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. , 2021, Chemical reviews.

[32]  Jing Yu,et al.  Zn Dopants Synergistic Oxygen Vacancy Boosts Ultrathin CoO Layer for CO2 Photoreduction , 2021, Advanced Functional Materials.

[33]  Jiaguo Yu,et al.  Emerging S‐Scheme Photocatalyst , 2021, Advanced materials.

[34]  Jingjing Wan,et al.  Semiconducting MOF@ZnS Heterostructures for Photocatalytic Hydrogen Peroxide Production: Heterojunction Coverage Matters , 2021, Advanced Functional Materials.

[35]  Yanjing Su,et al.  Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Z‐Scheme ZnIn2S4/g‐C3N4 Heterojunction , 2021, Advanced Functional Materials.

[36]  Haitao Li,et al.  CO2 Dominated Bifunctional Catalytic Sites for Efficient Industrial Exhaust Conversion , 2021, Advanced Functional Materials.

[37]  C. Liang,et al.  Cd 3 (C 3 N 3 S 3 ) 2 Polymer/Sn Schottky Heterojunction for Broadband‐solar Highly Selective Photocatalytic CO 2 Reduction , 2021, Solar RRL.

[38]  Xuanhua Li,et al.  Sulfur‐Deficient ZnIn2S4/Oxygen‐Deficient WO3 Hybrids with Carbon Layer Bridges as a Novel Photothermal/Photocatalytic Integrated System for Z‐Scheme Overall Water Splitting , 2021, Advanced Energy Materials.

[39]  Xu‐Bing Li,et al.  Rational Design of Dot‐on‐Rod Nano‐Heterostructure for Photocatalytic CO2 Reduction: Pivotal Role of Hole Transfer and Utilization , 2021, Advanced materials.

[40]  Jiaguo Yu,et al.  BiOBr/NiO S‐Scheme Heterojunction Photocatalyst for CO2 Photoreduction , 2021, Solar RRL.

[41]  Huilin Hou,et al.  MOFs-Derived Fusiform In2 O3 Mesoporous Nanorods Anchored with Ultrafine CdZnS Nanoparticles for Boosting Visible-Light Photocatalytic Hydrogen Evolution. , 2021, Small.

[42]  Longge Li,et al.  Hierarchical Co0.85 Se-CdSe/MoSe2 /CdSe Sandwich-Like Heterostructured Cages for Efficient Photocatalytic CO2 Reduction. , 2021, Small.

[43]  T. He,et al.  ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction , 2021 .

[44]  Xiaoyong Wu,et al.  Promoted charge separation from nickel intervening in [Bi2O2]2+ layers of Bi2O2S crystals for enhanced photocatalytic CO2 conversion , 2021 .

[45]  Shaojun Guo,et al.  Ni1−xCoxSe2C/ZnIn2S4 Hybrid Nanocages with Strong 2D/2D Hetero‐Interface Interaction Enable Efficient H2‐Releasing Photocatalysis , 2021, Advanced Functional Materials.

[46]  C. Liang,et al.  Integrated S‐Scheme Heterojunction of Amine‐Functionalized 1D CdSe Nanorods Anchoring on Ultrathin 2D SnNb2O6 Nanosheets for Robust Solar‐Driven CO2 Conversion , 2021, Solar RRL.

[47]  Zhenbin Wang,et al.  Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO2 Hydrogenation over In2O3 Surfaces , 2021 .

[48]  Liang Li,et al.  Interfacial Chemical Bond‐Modulated Z‐Scheme Charge Transfer for Efficient Photoelectrochemical Water Splitting , 2021, Advanced Energy Materials.

[49]  Jiaguo Yu,et al.  Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres , 2020, Nature Communications.

[50]  Suwen Li,et al.  Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight , 2021 .

[51]  Qihang Mao,et al.  Proton-dependent photocatalytic dehalogenation activities caused by oxygen vacancies of In2O3 , 2021 .

[52]  Qinghua Zhang,et al.  Photocatalytic CO2 Reduction to CO over Ni Single Atoms Supported on Defect‐Rich Zirconia , 2020, Advanced Energy Materials.

[53]  Jiaguo Yu,et al.  Designing 0D/2D S-scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria. , 2020, Angewandte Chemie.

[54]  Yanli Zhao,et al.  Nitrogen‐Doped Carbon‐Coated CuO‐In2O3 p–n Heterojunction for Remarkable Photocatalytic Hydrogen Evolution , 2019, Advanced Energy Materials.

[55]  Emily A Carter,et al.  Theoretical Insights into Heterogeneous (Photo)electrochemical CO2 Reduction. , 2018, Chemical reviews.