Advanced optical characterization of micro solid immersion lens

We report on the advanced optical characterizations of microfabricated solid immersion lenses with 2-μm diameter, operating at λ= 642 nm. The main feature, the spot size reduction, has been investigated by applying a focused Gaussian beam of NA = 0.9. Particular illuminating beams, e.g., Bessel-Gauss beams of the zeroth and the first order, a doughnutshape beam and its decompositions, i.e. two-half-lobes beams, have also been used to influence the shape of the immersed focal spot. Detailed optical characterizations have been conducted by measuring the amplitude and phase distributions with a high-resolution interference microscope (HRIM) in volume around the focal spot. The immersion effect of the SiO2 solid immersion lens leads to a spot-size reduction of approximately 1.5 which agrees well with theory. Particularly shaped incident beams exhibit a comparable size reduction of the immersed spots. Such structured focal spots are of significant interest in optical trapping, lithography, and optical data storage systems.

[1]  H. Herzig,et al.  Talbot Images of Wavelength-scale Amplitude Gratings , 2022 .

[2]  E. Abbe,et al.  VII.—On the Estimation of Aperture in the Microscope. , 1881 .

[3]  Ruslan Vasilyeu,et al.  Generating superpositions of higher-order Bessel beams. , 2009, Optics express.

[4]  Vladlen G. Shvedov,et al.  Robust trapping and manipulation of airborne particles with a bottle beam , 2011 .

[5]  B. Dörband,et al.  Handbook of optical systems , 2012 .

[6]  D. Hall,et al.  Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution. , 1994, Optics letters.

[7]  Tetsuji Yano,et al.  Fabrication of high-refractive-index glass micron-sized solid immersion lenses by a surface-tension mold technique , 2008 .

[8]  Philip Kim,et al.  Near-field focusing and magnification through self-assembled nanoscale spherical lenses , 2009, Nature.

[9]  E. Abbe XXXVII.—On New Methods for Improving Spherical Correction, applied to the Construction of Wide-angled Object-glasses , 1879 .

[10]  Kishan Dholakia,et al.  Generation of high-order Bessel beams by use of an axicon , 2000 .

[11]  K. Dholakia,et al.  Optical micromanipulation using a Bessel light beam , 2001 .

[12]  Daniel R. Mason,et al.  Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. , 2010, Optics letters.

[13]  D. Malacara Optical Shop Testing , 1978 .

[14]  Myun-Sik Kim,et al.  Small-size microlens characterization by multiwavelength high-resolution interference microscopy. , 2010, Optics express.

[15]  Gregg T. Borek,et al.  Investigation of Micro Solid Immersion Lens Mounting Systems , 2007 .

[16]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[17]  Myun-Sik Kim,et al.  Engineering photonic nanojets. , 2011, Optics express.

[18]  J. Popp,et al.  Investigations of multiple component systems by means of optical trapping and Raman spectroscopy , 1995 .

[19]  Wieslaw Krolikowski,et al.  Optical guiding of absorbing nanoclusters in air. , 2009, Optics express.

[20]  M Saffman,et al.  Atom trapping in an interferometrically generated bottle beam trap. , 2009, Optics letters.

[21]  S. Chu The manipulation of neutral particles , 1998 .

[22]  E. James Davis,et al.  The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena , 2012 .

[23]  T. Eiju,et al.  Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. , 1987, Applied optics.

[24]  Myun-Sik Kim,et al.  Amplitude and Phase Measurements of Highly Focused Light in Optical Data Storage Systems , 2010 .

[25]  J. Schwider,et al.  Digital wave-front measuring interferometry: some systematic error sources. , 1983, Applied optics.

[26]  Xiaodong He,et al.  Trapping a single atom in a blue detuned optical bottle beam trap. , 2010, Optics letters.

[27]  M Stalder,et al.  Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. , 1996, Optics letters.

[28]  Hiroshi Masuhara,et al.  Optical trapping of a metal particle and a water droplet by a scanning laser beam , 1992 .

[29]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[30]  Myun-Sik Kim,et al.  Longitudinal-differential interferometry: direct imaging of axial superluminal phase propagation. , 2012, Optics letters.

[31]  Robert Brunner,et al.  Diffraction-based solid immersion lens. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Toralf Scharf,et al.  High Resolution Interference Microscopy: A Tool for Probing Optical Waves in the Far-Field on a Nanometric Length Scale , 2006 .

[33]  F. Gori,et al.  Bessel-Gauss beams , 1987 .

[34]  E. James Davis,et al.  The Airborne Microparticle , 2002 .

[35]  Guy Indebetouw,et al.  Nondiffracting optical fields: some remarks on their analysis and synthesis , 1989 .

[36]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[37]  Myun-Sik Kim,et al.  Subwavelength-size solid immersion lens. , 2011, Optics letters.

[38]  G. Kino,et al.  Solid immersion microscope , 1990 .

[39]  H. Herzig,et al.  Gouy phase anomaly in photonic nanojets , 2011 .