Strain engineering of magnetic exchange and topological magnons in chromium trihalides from first-principles

[1]  T. Taniguchi,et al.  Dielectric Environment Sensitivity of Carbon Centers in Hexagonal Boron Nitride. , 2023, Small.

[2]  M. Katsnelson,et al.  Dielectric tunability of magnetic properties in orthorhombic ferromagnetic monolayer CrSBr , 2023, npj Computational Materials.

[3]  A. Continenza,et al.  Theoretical Study of Magnon Spin Currents in Chromium Trihalide Hetero-bilayers: Implications for Magnonic and Spintronic Devices , 2022, ACS Applied Nano Materials.

[4]  A. Ebrahimian,et al.  Control of magnetic states and spin interactions in bilayer CrCl3 with strain and electric fields: an ab initio study , 2022, Scientific Reports.

[5]  Jos'e J. Baldov'i,et al.  Magnon Straintronics in the 2D van der Waals Ferromagnet CrSBr from First-Principles , 2022, Nano letters.

[6]  K. Krämer,et al.  Thermal Evolution of Dirac Magnons in the Honeycomb Ferromagnet CrBr_{3}. , 2022, Physical review letters.

[7]  N. Marzari,et al.  HP - A code for the calculation of Hubbard parameters using density-functional perturbation theory , 2022, Comput. Phys. Commun..

[8]  Lidong Dai,et al.  Pressure-Induced Structural Phase Transition and Metallization of CrCl3 under Different Hydrostatic Environments up to 50.0 GPa. , 2022, Inorganic chemistry.

[9]  I. Dasgupta,et al.  Exchange interactions and spin dynamics in the layered honeycomb ferromagnet CrI3 , 2022, Physical Review B.

[10]  C. Bacaksiz,et al.  Tailoring high-frequency magnonics in monolayer chromium trihalides , 2021, 2D Materials.

[11]  Y. Kvashnin,et al.  Spin-lattice couplings in two-dimensional CrI$_3$ from first-principles study , 2021, 2111.05382.

[12]  M. Katsnelson,et al.  Excitons in Bulk and Layered Chromium Tri-Halides: From Frenkel to the Wannier-Mott Limit , 2021, 2110.08174.

[13]  M. Stone,et al.  Massless Dirac magnons in the two dimensional van der Waals honeycomb magnet CrCl3 , 2021, 2D Materials.

[14]  T. Olsen Unified Treatment of Magnons and Excitons in Monolayer CrI_{3} from Many-Body Perturbation Theory. , 2021, Physical review letters.

[15]  J. Wen,et al.  Topological magnon insulator spin excitations in the two-dimensional ferromagnet CrBr3 , 2021, Physical Review B.

[16]  Zhaoming Huang,et al.  Remarkably improved Curie temperature for two-dimensional CrI3 by gas molecular adsorption: a DFT study , 2021 .

[17]  M. Katsnelson,et al.  Electronic structure of chromium trihalides beyond density functional theory , 2021, Physical Review B.

[18]  L. Craco,et al.  Electronic structure of rhombohedral CrX3 (X=Br, Cl, I) van der Waals crystals , 2021 .

[19]  X. Wang,et al.  Topological magnonics , 2021, Journal of Applied Physics.

[20]  M. Katsnelson,et al.  Environmental screening and ligand-field effects to magnetism in CrI3 monolayer , 2021, npj Computational Materials.

[21]  Dmitri E. Nikonov,et al.  The 2021 Magnonics Roadmap , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Bess Vlaisavljevich,et al.  Improved Spin-State Energy Differences of Fe(II) Molecular and Crystalline Complexes via the Hubbard U-Corrected Density. , 2021, Journal of chemical theory and computation.

[23]  Y. Mokrousov,et al.  The interplay of Dzyaloshinskii-Moriya and Kitaev interactions for magnonic properties of Heisenberg-Kitaev honeycomb ferromagnets , 2020, 2012.13729.

[24]  M. Katsnelson,et al.  Dynamical correlations in single-layer CrI3 , 2020, Physical Review B.

[25]  A. Nevidomskyy,et al.  Topological Weyl magnons and thermal Hall effect in layered honeycomb ferromagnets , 2020, Physical Review B.

[26]  Y. Kvashnin,et al.  Monolayer CrCl_{3} as an Ideal Test Bed for the Universality Classes of 2D Magnetism. , 2020, Physical review letters.

[27]  M. Katsnelson,et al.  Electron correlation effects on exchange interactions and spin excitations in 2D van der Waals materials , 2020, npj Computational Materials.

[28]  A. S. Nunez,et al.  Theory of magnetism in the van der Waals magnet CrI3. , 2020, 2012.03099.

[29]  N. Marzari,et al.  Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations , 2020, 2011.03271.

[30]  A. Rodin,et al.  Collective excitations in 2D materials , 2020, Nature Reviews Physics.

[31]  Eric Bousquet,et al.  TB2J: A python package for computing magnetic interaction parameters , 2020, Comput. Phys. Commun..

[32]  W. Schlotter,et al.  Ultrafast modification of the electronic structure of a correlated insulator , 2020, Physical Review Research.

[33]  Wei Zhang,et al.  Self-Hybridization and Tunable Magnon-Magnon Coupling in van der Waals Synthetic Magnets , 2020, 2008.01298.

[34]  M. Katsnelson,et al.  Relativistic exchange interactions in CrX3 ( X=Cl , Br, I) monolayers , 2020, 2007.07611.

[35]  Ethan C. Ahn 2D materials for spintronic devices , 2020, npj 2D Materials and Applications.

[36]  S. Parkin,et al.  Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer , 2020, Science.

[37]  W. Magnus,et al.  2D ferromagnetism at finite temperatures under quantum scrutiny , 2020, 2006.03287.

[38]  R. Asgari,et al.  Strain and electric-field control of spin-spin interactions in monolayer CrI3 , 2020, Physical Review Materials.

[39]  S. Chi,et al.  Magnetic anisotropy in ferromagnetic CrI3 , 2020, Physical Review B.

[40]  S. K. Tiwari,et al.  Graphene research and their outputs: Status and prospect , 2020 .

[41]  A. S. Nunez,et al.  Topological magnonics in the two-dimensional van der Waals magnet CrI3 , 2020, Physical Review B.

[42]  Li Yang,et al.  Meron-like topological spin defects in monolayer CrCl3 , 2020, Nature Communications.

[43]  N. Peres,et al.  Topological magnons in CrI3 monolayers: an itinerant fermion description , 2020, 2D Materials.

[44]  M. Katsnelson,et al.  Orbitally-resolved ferromagnetism of monolayer CrI3 , 2019, 2D Materials.

[45]  A. Morpurgo,et al.  Determining the phase diagram of atomically thin layered antiferromagnet CrCl3 , 2019, Nature Nanotechnology.

[46]  R. Wu,et al.  Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature , 2019, Physical Review B.

[47]  D. Jana,et al.  Strain induced electronic and magnetic properties of 2D magnet CrI3: a DFT approach , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Joshua E. Goldberger,et al.  Pressure-controlled interlayer magnetism in atomically thin CrI3 , 2019, Nature Materials.

[49]  O. Eriksson,et al.  Ligand Effects on the Linear Response Hubbard U: The Case of Transition Metal Phthalocyanines. , 2019, The journal of physical chemistry. A.

[50]  T. Yu,et al.  Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3. , 2019, Nano letters.

[51]  P. Jarillo-Herrero,et al.  Gigahertz Frequency Antiferromagnetic Resonance and Strong Magnon-Magnon Coupling in the Layered Crystal CrCl_{3}. , 2019, Physical review letters.

[52]  J. Goldberger,et al.  Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev Ferromagnet CrI_{3}. , 2019, Physical review letters.

[53]  Shengjun Yuan,et al.  Strain-tunable magnetic and electronic properties of monolayer CrI3. , 2019, Physical chemistry chemical physics : PCCP.

[54]  A. P. Pyatakov,et al.  Straintronics: a new trend in micro- and nanoelectronics and materials science , 2018, Physics-Uspekhi.

[55]  Choong H. Kim,et al.  Tunable magnetic topological insulating phases in monolayer CrI3 , 2018, Physical Review B.

[56]  Jia-An Yan,et al.  Strain-tunable magnetic anisotropy in monolayer CrCl3 , CrBr3 , and CrI3 , 2018, Physical Review B.

[57]  D. Soriano,et al.  Interplay between interlayer exchange and stacking in CrI3 bilayers , 2018, Solid State Communications.

[58]  K. Novoselov,et al.  Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3 , 2018, Nature Electronics.

[59]  Á. Rubio,et al.  Ultrafast Modification of Hubbard U in a Strongly Correlated Material: Ab initio High-Harmonic Generation in NiO. , 2017, Physical review letters.

[60]  Micael J. T. Oliveira,et al.  Self-consistent DFT +U method for real-space time-dependent density functional theory calculations , 2017, 1711.08935.

[61]  G. Aeppli,et al.  Dirac Magnons in Honeycomb Ferromagnets , 2017, 1706.03384.

[62]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[63]  M. Katsnelson,et al.  Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit , 2017, 1703.01145.

[64]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[65]  Qiang Sun,et al.  Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. , 2016, Physical chemistry chemical physics : PCCP.

[66]  S. Owerre A first theoretical realization of honeycomb topological magnon insulator , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[67]  A. Slavin,et al.  Magnonics: a new research area in spintronics and spin wave electronics , 2015 .

[68]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[69]  J. Fabian,et al.  Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics , 2015, 1506.08954.

[70]  A. Serga,et al.  Magnon spintronics , 2015, Nature Physics.

[71]  F. Guinea,et al.  Strain engineering in semiconducting two-dimensional crystals , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[72]  G. Eda,et al.  Spin–orbit proximity effect in graphene , 2014, Nature Communications.

[73]  B. Lake,et al.  Linear spin wave theory for single-Q incommensurate magnetic structures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[74]  Qiang Sun,et al.  Self-consistent determination of Hubbard U for explaining the anomalous magnetism of the Gd13 cluster , 2014 .

[75]  Francisco Guinea,et al.  Local strain engineering in atomically thin MoS2. , 2013, Nano letters.

[76]  S. Jhi,et al.  Proximity-induced giant spin-orbit interaction in epitaxial graphene on a topological insulator , 2012, 1206.3608.

[77]  Jayasimha Atulasimha,et al.  Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing , 2011, 1101.2222.

[78]  H. Ulrichs,et al.  The building blocks of magnonics , 2011, 1101.0479.

[79]  Dirk Grundler,et al.  PREFACE: Magnonics Magnonics , 2010 .

[80]  D. Grundler,et al.  Magnonics: Spin Waves on the Nanoscale , 2009 .

[81]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[82]  S. Hill,et al.  Strongly correlated electrons in the [Ni(hmp)(ROH)X]4 single molecule magnet: a DFT+U study. , 2008, Physical review letters.

[83]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[84]  N. Marzari,et al.  Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. , 2006, Physical review letters.

[85]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[86]  M. Zerner,et al.  A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries , 1985 .

[87]  B. Kuhlow Magnetic Ordering in CrCl3 at the Phase Transition , 1982 .

[88]  J. Colpa Diagonalization of the quadratic boson hamiltonian , 1978 .

[89]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[90]  J. P. Remeika,et al.  Spin Waves in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering , 1971 .