Two-point gradient-based MMA (TGMMA) algorithm for topology optimization

[1]  Seog-Young Han,et al.  A modified ant colony optimization algorithm for dynamic topology optimization , 2013 .

[2]  Andres Tovar,et al.  Topology optimization for minimum compliance using a control strategy , 2013 .

[3]  Z. Kang,et al.  An adaptive refinement approach for topology optimization based on separated density field description , 2013 .

[4]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[5]  A. Groenwold,et al.  On the conditional acceptance of iterates in SAO algorithms based on convex separable approximations , 2010 .

[6]  Derren W. Wood,et al.  Approximated approximations for SAO , 2010 .

[7]  A. Groenwold,et al.  A quadratic approximation for structural topology optimization , 2009 .

[8]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[9]  Anders Klarbring,et al.  An Introduction to Structural Optimization , 2008 .

[10]  A. Groenwold,et al.  Sequential approximate optimization using dual subproblems based on incomplete series expansions , 2008 .

[11]  A. Groenwold,et al.  On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem , 2008 .

[12]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[13]  Jacobus E. Rooda,et al.  Incomplete series expansion for function approximation , 2007 .

[14]  C. Fleury,et al.  A family of MMA approximations for structural optimization , 2002 .

[15]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[16]  E. Hinton,et al.  Comparisons between algorithms for structural topology optimization using a series of benchmark studies , 2001 .

[17]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[18]  Michaël Bruyneel,et al.  Composite structures optimization using sequential convex programming , 2000 .

[19]  M. Beckers,et al.  Dual methods for discrete structural optimization problems , 2000 .

[20]  R. Grandhi,et al.  Effective Two-Point Function Approximation for Design Optimization , 1998 .

[21]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[22]  Ramana V. Grandhi,et al.  Improved two-point function approximations for design optimization , 1995 .

[23]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[24]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[25]  J. Barthelemy,et al.  Two point exponential approximation method for structural optimization , 1990 .

[26]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[27]  Claude Fleury,et al.  CONLIN: An efficient dual optimizer based on convex approximation concepts , 1989 .

[28]  V. Venkayya Optimality criteria: A basis for multidisciplinary design optimization , 1989 .

[29]  C. Fleury Efficient approximation concepts using second order information , 1988 .

[30]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[31]  Layne T. Watson,et al.  Two-point constraint approximation in structural optimization , 1987 .

[32]  V. Braibant,et al.  Structural optimization: A new dual method using mixed variables , 1986 .

[33]  D. Dawe,et al.  Matrix and finite element displacement analysis of structures , 1984 .

[34]  Lucien A. Schmit,et al.  Structural Synthesis by Combining Approximation Concepts and Dual Methods , 1980 .

[35]  J. E. Falk Lagrange Multipliers and Nonconvex Programs , 1969 .