Physicochemical Aspects, Bioactive Compounds, Phenolic Profile and In Vitro Antioxidant Activity of Tropical Red Fruits and Their Blend

The combination of fruit pulps from different species, in addition to multiplying the offer of flavors, aromas and textures, favors the nutritional spectrum and the diversity of bioactive principles. The objective was to evaluate and compare the physicochemical characteristics, bioactive compounds, profile of phenolic compounds and in vitro antioxidant activity of pulps of three species of tropical red fruits (acerola, guava and pitanga) and of the blend produced from the combination. The pulps showed significant values of bioactive compounds, with emphasis on acerola, which had the highest levels in all parameters, except for lycopene, with the highest content in pitanga pulp. Nineteen phenolic compounds were identified, being phenolic acids, flavanols, anthocyanin and stilbene; of these, eighteen were quantified in acerola, nine in guava, twelve in pitanga and fourteen in the blend. The blend combined positive characteristics conferred by the individual pulps, with low pH favorable for conservation, high levels of total soluble solids and sugars, greater diversity of phenolic compounds and antioxidant activity close to that of acerola pulp. Pearson’s correlation between antioxidant activity and ascorbic acid content, total phenolic compounds, flavonoids, anthocyanins and carotenoids for the samples were positive, indicating their use as a source of bioactive compounds.

[1]  Xuewei Shi,et al.  Analysis of physicochemical characteristics, antioxidant activity and key aroma compounds of five flat peach cultivars grown in Xinjiang , 2023, LWT.

[2]  N. Mozumder,et al.  Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities , 2022, LWT.

[3]  M. Okoth,et al.  Physicochemical and Processing Qualities of Guava Varieties in Kenya , 2022, International Journal of Fruit Science.

[4]  Suely Cristina Pereira de Lima Oliveira,et al.  Caracterização físico-química da polpa do abacaxi congelada e liofilizada / Physicochemical characterization of frozen and freeze-dried pineapple pulp , 2022, Brazilian Journal of Development.

[5]  Renato Lima Dantas,et al.  QUALIDADE DE FRUTOS DE PITANGUEIRA (Eugenia uniflora L.) DURANTE A MATURAÇÃO , 2021, Revista de Ciências da Saúde Nova Esperança.

[6]  Valdeni Terezinha Zani,et al.  Determinação de polifenóis totais e flavonoides em Eugenia uniflora l. (PITANGA): fruto in natura, polpa congelada e geleia / Determination of total polyphenols and flavonoids in Eugenia uniflora l. (surinam cherry): fresh fruit, frozen pulp and jelly , 2021, Brazilian Journal of Health Review.

[7]  K. Shivashankara,et al.  Evaluation of bioactive constituents of Garcinia indica (kokum) as a potential source of hydroxycitric acid, anthocyanin, and phenolic compounds , 2021, LWT.

[8]  D. G. Bortolini,et al.  Bioactivity and bioaccessibility of phenolic compounds from Brazilian fruit purees , 2021 .

[9]  M. W. Schuch,et al.  Caracterização físico-química de polpa e casca de pitaya ‘Golden’ , 2021, Research, Society and Development.

[10]  Darcieli Aparecida Cassol,et al.  Quality of the pirenic and apirenic fruits of surinam cherry tree accesses (Eugenia uniflora) , 2021, Colloquim Agrariae.

[11]  Bruna Mirelle Vicente Alves Freitas,et al.  Caracterização físico-química de refresco, néctar e suco tropical comercial sabor goiaba / Physical-chemical characterization of soft drink, nectar and commercial tropical juice with guava flavor , 2021, Brazilian Journal of Development.

[12]  Bárbara Valéria Pereira Lins,et al.  Modelos de predição aplicados a cinética de secagem solar da goiaba , 2021, Research, Society and Development.

[13]  M. Rocha-Leão,et al.  Microencapsulation of guava pulp using prebiotic wall material , 2021, Brazilian Journal of Food Technology.

[14]  Marcos dos Santos Lima,et al.  Brazilian varieties of acerola (Malpighia emarginata DC.) produced under tropical semi-arid conditions: Bioactive phenolic compounds, sugars, organic acids, and antioxidant capacity. , 2021, Journal of food biochemistry.

[15]  M. Singh,et al.  Quantification of bioactive compounds in guava at different ripening stages , 2021 .

[16]  E. Ibáñez,et al.  Recovery of ascorbic acid, phenolic compounds and carotenoids from acerola by-products: An opportunity for their valorization , 2021, LWT.

[17]  Juliana Pinto de Lima,et al.  Propriedades físico-químicas da polpa de tamarillo (Solanum betaceum) e sua aplicabilidade na elaboração de sorvetes , 2021 .

[18]  Airton Gonçalves de Oliveira,et al.  Elaboration of Blends of Pitaya Pulps With Acerola , 2021 .

[19]  S. Boonpangrak,et al.  Phytochemical contents, antioxidant activity, and anticancer activity of three common guava cultivars in Thailand , 2021 .

[20]  H. B. Rashmi,et al.  Phenolic acids from vegetables: A review on processing stability and health benefits. , 2020, Food research international.

[21]  M. Leonel,et al.  Improving the nutritional value and extending shelf life of red guava by adding calcium chloride , 2020 .

[22]  E. Solak,et al.  Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer , 2020, Current Applied Physics.

[23]  B. Zhu,et al.  Metabolomic analysis of acerola cherry (Malpighia emarginata) fruit during ripening development via UPLC-Q-TOF and contribution to the antioxidant activity. , 2020, Food research international.

[24]  Mudasir Ahmad,et al.  Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. , 2020, Food chemistry.

[25]  Rana Muhammad Aadil,et al.  Assessing the impact of ultra‐sonication and thermo‐ultrasound on antioxidant indices and polyphenolic profile of apple‐grape juice blend , 2020 .

[26]  C. Ochoa-Martínez,et al.  Physicochemical Properties of Guava Snacks as Affected by Drying Technology , 2020 .

[27]  Lailla Sabrina Queiroz Nazareno,et al.  Characterization and quality assessment of frozen tropical fruit pulp , 2019 .

[28]  M. Kieliszek,et al.  The Effect of the Addition of Blue Honeysuckle Berry Juice to Apple Juice on the Selected Quality Characteristics, Anthocyanin Stability, and Antioxidant Properties , 2019, Biomolecules.

[29]  D. Rodriguez-Amaya Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. , 2019, Food research international.

[30]  F.L.H. Silva,et al.  Optimization of the spray drying process conditions for acerola and seriguela juice mix , 2019, Food Science and Technology.

[31]  Sébastien Dupont,et al.  Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. , 2019, Food chemistry.

[32]  Deniete Soares Magalhães,et al.  Descriptive analysis and genetic dissimilarity between accesses of acerola trees , 2018 .

[33]  A. Plotto,et al.  Assessment of fruit aroma for twenty-seven guava (Psidium guajava) accessions through three fruit developmental stages , 2018, Scientia Horticulturae.

[34]  S. H. Flôres,et al.  Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit , 2018, Journal of Food Science and Technology.

[35]  V. R. Souza,et al.  Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. , 2018, Food chemistry.

[36]  H. Coutinho,et al.  HPLC and in vitro evaluation of antioxidant properties of fruit from Malpighia glabra (Malpighiaceae) at different stages of maturation. , 2017, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[37]  Karina Aparecida Furlaneto,et al.  Bioactive compounds in different acerola fruit cultivares , 2017 .

[38]  Maria Fernanda Pimentel,et al.  Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. , 2017, Talanta.

[39]  C. Azevedo,et al.  The Assistat Software Version 7.7 and its use in the analysis of experimental data , 2016 .

[40]  L. Marczak,et al.  Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating. , 2016, Food chemistry.

[41]  V. R. Souza,et al.  Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits , 2012 .

[42]  M. Vizzotto,et al.  Caracterização físico-química e capacidade antioxidante de pitanga (Eugenia uniflora L.) , 2011 .

[43]  Helena Teixeira Godoy,et al.  Otimização de metodologia colorimétrica para a determinação de ácido ascórbico em geleias de frutas , 2010 .

[44]  M. Nagata,et al.  Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit , 1992 .

[45]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .

[46]  A. Willis,et al.  The estimation of carbohydrates in plant extracts by anthrone. , 1954, The Biochemical journal.

[47]  E. de Souza Viana,et al.  Physicochemical and Bioactive Compound Evaluation of Acerola Genotypes , 2021 .

[48]  A. Dias,et al.  Physicochemical and microbiological assessment of frozen fruit pulps marketed in Santarém-PA , 2020 .

[49]  Liling Xiang,et al.  Pharmacological action and potential targets of chlorogenic acid. , 2020, Advances in pharmacology.

[50]  S. Souza,et al.  Desenvolvimento e aceitabilidade de um néctar misto de Manga (mangifera indica l.) Var. Carlota e Maracujá do sono (passiflora setacea) , 2020 .

[51]  J. B. Laurindo,et al.  PRODUÇÃO E AVALIAÇÃO DE CHIPS DE GOIABA (PSIDIUM GUAJAVA L.) , 2020 .

[52]  Geíza Alves de Azerêdo,et al.  CARACTERIZAÇÃO DA COMPOSIÇÃO NUTRICIONAL E DO TEOR DE PIGMENTOS DE PITANGA (EUGENIA UNIFLORA L.) NAS VARIEDADES VERMELHA E ROXA , 2020 .

[53]  Sanjay Kumar,et al.  Quality evaluation of prepared guava-orange fruit bar , 2019 .

[54]  S. Rodrigues,et al.  Effects of glow plasma technology on some bioactive compounds of acerola juice. , 2019, Food research international.

[55]  J. D. Gouveia,et al.  Elaboração e caracterização de geleia prebiótica mista de jabuticaba e acerola , 2019, Brazilian Journal of Food Technology.

[56]  Liang Wenhua,et al.  Chlorogenic acid (CGA): A pharmacological review and call for further research. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[57]  D. Rodriguez-Amaya,et al.  Physicochemical characterization and antioxidant capacity of pitanga fruits , 2011 .

[58]  H. Lichtenthaler CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANES , 1987 .