Three-dimensional buckled honeycomb boron lattice with vacancies as an intermediate phase on the transition pathway from α-B to γ-B

[1]  Jooyoung Lee,et al.  Ab initio materials design using conformational space annealing and its application to searching for direct band gap silicon crystals , 2016, Comput. Phys. Commun..

[2]  In-Ho Lee,et al.  Direct band gap carbon superlattices with efficient optical transition , 2016, 1601.00420.

[3]  Xianbin Li,et al.  Boron based two-dimensional crystals: theoretical design, realization proposal and applications. , 2015, Nanoscale.

[4]  Qiang Zhu,et al.  Generalized evolutionary metadynamics for sampling the energy landscapes and its applications , 2015 .

[5]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[6]  In-Ho Lee,et al.  Dipole-allowed direct band gap silicon superlattices , 2015, Scientific Reports.

[7]  Yeliang Wang,et al.  A novel two-dimensional MgB6 crystal: metal-layer stabilized boron kagome lattice. , 2015, Physical chemistry chemical physics : PCCP.

[8]  Lizhi Zhang,et al.  Prediction of a Dirac state in monolayer TiB2 , 2014 .

[9]  In-Ho Lee,et al.  Computational search for direct band gap silicon crystals , 2014 .

[10]  Yeliang Wang,et al.  First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer , 2014 .

[11]  W. Goddard,et al.  Deformation Induced Solid−Solid Phase Transitions in Gamma Boron , 2014 .

[12]  O. Kurakevych,et al.  Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis , 2013, Scientific Reports.

[13]  Chaoyu He,et al.  Structures, stability, mechanical and electronic properties of α-boron and α*-boron , 2013 .

[14]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[15]  Graeme Henkelman,et al.  A generalized solid-state nudged elastic band method. , 2012, The Journal of chemical physics.

[16]  Y. Le Godec,et al.  Comparison of solid-state crystallization of boron polymorphs at ambient and high pressures , 2011, 1110.1731.

[17]  Natalia Dubrovinskaia,et al.  Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma , 2011, Scientific reports.

[18]  A. Oganov,et al.  The high-pressure phase of boron, γ-B28: Disputes and conclusions of 5 years after discovery , 2011, 1109.3035.

[19]  L. Lei,et al.  Phase relations in boron at pressures up to 18 GPa and temperatures up to 2200 ∘ C , 2011, 1109.1115.

[20]  Hui Bai,et al.  Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. , 2011, Physical chemistry chemical physics : PCCP.

[21]  L. Dubrovinsky,et al.  Electron-deficient and polycenter bonds in the high-pressure γ-B28 phase of boron. , 2011, Physical review letters.

[22]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Michele Parrinello,et al.  Nucleation mechanism for the direct graphite-to-diamond phase transition. , 2011, Nature materials.

[24]  A. Oganov,et al.  Boron: a hunt for superhard polymorphs , 2009, 0911.3193.

[25]  H. Hillebrecht,et al.  Boron: elementary challenge for experimenters and theoreticians. , 2009, Angewandte Chemie.

[26]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[27]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[28]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[29]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[30]  Julong He,et al.  Ionicities of boron-boron bonds in B(12) icosahedra. , 2005, Physical review letters.

[31]  H. Mao,et al.  High-pressure high-temperature x-ray diffraction of β-boron to 30 GPa , 2003 .

[32]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .

[33]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[34]  M. Sakata,et al.  PECULIAR COVALENT BONDS IN ALPHA -RHOMBOHEDRAL BORON , 1999 .

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[37]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[38]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[39]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[40]  R. Hughes,et al.  The Structure of -Rhombohedral Boron , 1963 .

[41]  J. Kasper,et al.  The crystal structure of a simple rhombohedral form of boron , 1959 .

[42]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .