The application of hierarchical cluster analysis to the selection of isomorphous crystals.
暂无分享,去创建一个
[1] Pedro M. Valero-Mora,et al. ggplot2: Elegant Graphics for Data Analysis , 2010 .
[2] Elspeth F. Garman,et al. Radiation damage in macromolecular crystallography: what is it and why should we care? , 2010, Acta crystallographica. Section D, Biological crystallography.
[3] A. N. Popov,et al. Optimization of data collection taking radiation damage into account , 2010, Acta crystallographica. Section D, Biological crystallography.
[4] A. Urzhumtsev,et al. Cluster analysis for phasing with molecular replacement: a feasibility study , 2009, Acta crystallographica. Section D, Biological crystallography.
[5] D. Hofmann,et al. Cluster analysis and completeness of crystal structure generation , 2009 .
[6] Elspeth F Garman,et al. Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. , 2009, Journal of synchrotron radiation.
[7] J. Helliwell,et al. The interdependence of wavelength, redundancy and dose in sulfur SAD experiments. , 2008, Acta crystallographica. Section D, Biological crystallography.
[8] Andrea Schmidt,et al. On the routine use of soft X-rays in macromolecular crystallography. Part IV. Efficient determination of anomalous substructures in biomacromolecules using longer X-ray wavelengths. , 2007, Acta crystallographica. Section D, Biological crystallography.
[9] R. Ravelli,et al. Radiation damage in macromolecular cryocrystallography. , 2006, Current opinion in structural biology.
[10] Didier Nurizzo,et al. The ID23-1 structural biology beamline at the ESRF. , 2006, Journal of synchrotron radiation.
[11] Raimond B G Ravelli,et al. Improving radiation-damage substructures for RIP. , 2005, Acta crystallographica. Section D, Biological crystallography.
[12] Manfred S Weiss,et al. On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength. , 2005, Acta crystallographica. Section D, Biological crystallography.
[13] Thomas R. Schneider,et al. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .
[14] B. Halle. Biomolecular cryocrystallography: structural changes during flash-cooling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[15] Wei Dong,et al. High-throughput powder diffraction. II. Applications of clustering methods and multivariate data analysis , 2004 .
[16] George M Sheldrick,et al. Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.
[17] B. Matthews,et al. Reversible lattice repacking illustrates the temperature dependence of macromolecular interactions. , 2001, Journal of molecular biology.
[18] Wolfgang Kabsch,et al. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .
[19] W. Hendrickson,et al. Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. , 2011, Acta crystallographica. Section D, Biological crystallography.
[20] G. Sheldrick. A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.
[21] R. Irvin,et al. Pros and cons of cryocrystallography: should we also collect a room-temperature data set? , 2005, Acta crystallographica. Section D, Biological crystallography.
[22] Ram Seshadri. Crystal structures , 2004 .