A Unified Display Proof Theory for Bunched Logic

We formulate a unified display calculus proof theory for the four principal varieties of bunched logic by combining display calculi for their component logics. Our calculi satisfy cut-elimination, and are sound and complete with respect to their standard presentations. We show that the standard sequent calculus for BI can be seen as a reformulation of its display calculus, and argue that analogous sequent calculi for the other varieties of bunched logic seem very unlikely to exist.

[1]  Giuseppe Longo Mathematical Structures in Computer Science , 2012 .

[2]  Frank Pfenning,et al.  A hybrid logical framework , 2009 .

[3]  Philippa Gardner,et al.  Context logic as modal logic: completeness and parametric inexpressivity , 2007, POPL '07.

[4]  James Brotherston,et al.  Undecidability of Propositional Separation Logic and Its Neighbours , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[5]  Dominique Larchey-Wendling,et al.  Exploring the relation between Intuitionistic BI and Boolean BI: an unexpected embedding , 2009, Math. Struct. Comput. Sci..

[6]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..

[7]  Matthew J. Parkinson,et al.  jStar: towards practical verification for java , 2008, OOPSLA.

[8]  Kai Brünnler Deep Inference and Its Normal Form of Derivations , 2006, CiE.

[9]  Glynn Winskel,et al.  Editors' note: bibliometrics and the curators of orthodoxy , 2009, Math. Struct. Comput. Sci..

[10]  Shengchao Qin,et al.  Enhancing modular OO verification with separation logic , 2008, POPL '08.

[11]  Peter W. O'Hearn,et al.  Possible worlds and resources: the semantics of BI , 2004, Theor. Comput. Sci..

[12]  John C. Reynolds,et al.  Separation logic: a logic for shared mutable data structures , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[13]  Peter W. O'Hearn,et al.  BI as an assertion language for mutable data structures , 2001, POPL '01.

[14]  Greg Restall,et al.  Displaying and Deciding Substructural Logics 1: Logics with Contraposition , 1998, J. Philos. Log..

[15]  Bor-Yuh Evan Chang,et al.  Relational inductive shape analysis , 2008, POPL '08.

[16]  Peter W. O'Hearn,et al.  The Logic of Bunched Implications , 1999, Bulletin of Symbolic Logic.

[17]  Alasdair Urquhart,et al.  The undecidability of entailment and relevant implication , 1984, Journal of Symbolic Logic.

[18]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[19]  Dominique Larchey-Wendling,et al.  The Undecidability of Boolean BI through Phase Semantics , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[20]  David J. Pym,et al.  The semantics of BI and resource tableaux , 2005, Mathematical Structures in Computer Science.

[21]  Edmund Robinson,et al.  Under Consideration for Publication in Math. Struct. in Comp. Science , 2007 .

[22]  II. Mathematisches Power and Weakness of the Modal Display Calculus , 1996 .

[23]  Dominique Larchey-Wendling,et al.  Expressivity properties of boolean BI through relational models , 2006 .

[24]  David J. Pym,et al.  The semantics and proof theory of the logic of bunched implications , 2002, Applied logic series.

[25]  Peter W. O'Hearn,et al.  Strong Update, Disposal, and Encapsulation in Bunched Typing , 2006, MFPS.

[26]  Rajeev Goré,et al.  Gaggles, Gentzen and Galois: How to display your favourite substructural logic , 1998, Logic Journal of the IGPL.

[27]  Heinrich Wansing,et al.  Proof Theory of Modal Logic , 1996 .

[28]  James Brotherston,et al.  Classical BI: a logic for reasoning about dualising resources , 2009, POPL '09.