The Chow ring of a classifying space

We define the Chow ring of the classifying space of a linear algebraic group. In all the examples where we can compute it, such as the symmetric groups and the orthogonal groups, it is isomorphic to a natural quotient of the complex cobordism ring of the classifying space, a topological invariant. We apply this to get torsion information on the Chow groups of varieties defined as quotients by finite groups. This generalizes Atiyah and Hirzebruch's use of such varieties to give counterexamples to the Hodge conjecture with integer coefficients.

[1]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.

[2]  P. E. Conner,et al.  The relation of cobordism to k-theories , 1966 .

[3]  M. Hopkins,et al.  Morava K-theories of classifying spaces and generalized characters for finite groups , 1992 .

[4]  W. Fulton,et al.  Intersection Theory on Spherical Varieties , 1994 .

[5]  M. Atiyah,et al.  Analytic cycles on complex manifolds , 1962 .

[6]  M. Atiyah,et al.  Vector bundles and homogeneous spaces , 1961 .

[7]  Robert Evert Stong,et al.  Notes on cobordism theory , 1968 .

[8]  I. Kríz Morava K-theory of classifying spaces: Some calculations , 1997 .

[9]  Rahul Pandharipande,et al.  EQUIVARIANT CHOW RINGS OF O (K), SO (2K + 1), AND SO (4) , 1998 .

[10]  M. Atiyah,et al.  Equivariant $K$-theory and completion , 1969 .

[11]  Problemes Ouverts en Theorie des Intersections , 1971 .

[12]  M. Tezuka,et al.  Cohomology of finite groups and brown-peterson cohomology , 1989 .

[13]  J. Colliot-Thélène,et al.  Cycles algébriques de torsion et K-théorie algébrique Cours au C.I.M.E., juin 1991 , 1993 .

[14]  P. Landweber Elements of Infinite Filtration in Complex Cobordism. , 1972 .

[15]  M. Nori Algebraic cycles and Hodge theoretic connectivity , 1993 .

[16]  R. James Milgram,et al.  The classifying spaces for surgery and cobordism of manifolds , 1979 .

[17]  Marc Levine,et al.  The Arason invariant and mod 2 algebraic cycles , 1998 .

[18]  M. Atiyah Characters and cohomology of finite groups , 1961 .

[19]  W. Wilson The O-spectrum for Brown-Peterson cohomology , 1972 .

[20]  A. Suslin Algebraic K-theory of fields , 1986 .

[21]  Torsion algebraic cycles and complex cobordism , 1996, alg-geom/9609016.

[22]  W. Wilson The Ω-Spectrum for Brown-Peterson Cohomology Part II , 1975 .

[23]  M. Nakaoka Cohomology theory of a complex with a transformation of prime period and its applications , 1956 .

[24]  W. Graham,et al.  Equivariant intersection theory , 1996, alg-geom/9609018.

[25]  R. Hartshorne Equivalence relations of algebraic cycles and subvarieties of small codimension , 1974 .

[26]  F. Bogomolov The brauer group of quotient spaces by linear group actions , 1988 .

[27]  K. Paranjape Cohomological and cycle-theoretic connectivity , 1992, alg-geom/9202027.

[28]  M. Tanabe On Morava K-Theories of Chevalley Groups , 1995 .

[29]  M. Atiyah,et al.  Riemann-Roch theorems for differentiable manifolds , 1959 .

[30]  W. Waterhouse,et al.  Introduction to Affine Group Schemes , 1979 .

[31]  D. Ravenel,et al.  Brown–Peterson Cohomology from Morava K ‐Theory, II , 1998 .

[32]  S. Wilson The Complex Cobordism of BOn , 1984 .

[33]  Séminaire Bourbaki,et al.  Dix exposés sur la cohomologie des schémas , 1968 .

[34]  N. Yagita,et al.  Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups , 1993 .