Improved measurement of the spectral index of the diffuse radio background between 90 and 190 MHz

We report absolutely calibrated measurements of diffuse radio emission between 90 and 190 MHz from the Experiment to Detect the Global EoR Signature (EDGES). EDGES employs a wide beam zenith-pointing dipole antenna centred on a declination of -26.7$^\circ$. We measure the sky brightness temperature as a function of frequency averaged over the EDGES beam from 211 nights of data acquired from July 2015 to March 2016. We derive the spectral index, $\beta$, as a function of local sidereal time (LST) and find -2.60 > $\beta$ > -2.62 $\pm$0.02 between 0 and 12 h LST. When the Galactic Centre is in the sky, the spectral index flattens, reaching $\beta$ = -2.50 $\pm$0.02 at 17.7 h. The EDGES instrument is shown to be very stable throughout the observations with night-to-night reproducibility of $\sigma_{\beta}$ < 0.003. Including systematic uncertainty, the overall uncertainty of $\beta$ is 0.02 across all LST bins. These results improve on the earlier findings of Rogers & Bowman (2008) by reducing the spectral index uncertainty from 0.10 to 0.02 while considering more extensive sources of errors. We compare our measurements with spectral index simulations derived from the Global Sky Model (GSM) of de Oliveira-Costa et al. (2008) and with fits between the Guzm\'an et al. (2011) 45 MHz and Haslam et al. (1982) 408 MHz maps. We find good agreement at the transit of the Galactic Centre. Away from transit, the GSM tends to over-predict (GSM less negative) by 0.05 < $\Delta_{\beta} = \beta_{\text{GSM}}-\beta_{\text{EDGES}}$ < 0.12, while the 45-408 MHz fits tend to over-predict by $\Delta_{\beta}$ < 0.05.

[1]  F. Schinzel,et al.  Bayesian constraints on the global 21-cm signal from the Cosmic Dawn , 2016, 1606.06006.

[2]  A. Rogers,et al.  CALIBRATION OF THE EDGES HIGH-BAND RECEIVER TO OBSERVE THE GLOBAL 21 cm SIGNATURE FROM THE EPOCH OF REIONIZATION , 2016, 1602.08065.

[3]  A. Rogers,et al.  Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements , 2015, 1510.03477.

[4]  N. Razavi-Ghods,et al.  Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia , 2015, IEEE Transactions on Antennas and Propagation.

[5]  M. C. Toribio,et al.  The LOFAR Multifrequency Snapshot Sky Survey (MSSS) - I. Survey description and first results , 2015, 1509.01257.

[6]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[7]  On the Detection of Global 21-cm Signal from Reionization Using Interferometers , 2015, 1505.02491.

[8]  David R. DeBoer,et al.  PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM , 2015, 1503.00045.

[9]  Max Tegmark,et al.  FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA , 2015, 1502.07596.

[10]  David F. Moore,et al.  PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.

[11]  R. Ekers,et al.  BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal , 2015, Publications of the Astronomical Society of Australia.

[12]  G. Bernardi,et al.  FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20 , 2014, 1404.0887.

[13]  A. Rogers,et al.  Radiometric measurements of electron temperature and opacity of ionospheric perturbations , 2014, 1412.2255.

[14]  M. Remazeilles,et al.  An improved source-subtracted and destriped 408 MHz all-sky map , 2014, 1411.3628.

[15]  O. López-Cruz,et al.  PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT , 2013, 1311.0014.

[16]  L. Koopmans,et al.  Chromatic effects in the 21 cm global signal from the cosmic dawn , 2013, 1306.2172.

[17]  R. Subrahmanyan,et al.  IS THERE AN UNACCOUNTED FOR EXCESS IN THE EXTRAGALACTIC COSMIC RADIO BACKGROUND? , 2013, 1305.7060.

[18]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[19]  Nipanjana Patra,et al.  SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization , 2012, 1211.3800.

[20]  Hannes Jensen,et al.  Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.

[21]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[22]  Alejandro Álvarez Melcón,et al.  Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross‐section waveguide using frequency domain Green's functions , 2012 .

[23]  A. Kogut,et al.  SYNCHROTRON SPECTRAL CURVATURE FROM 22 MHz TO 23 GHz , 2012, 1205.4041.

[24]  Va,et al.  Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2011, 1106.5194.

[25]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[26]  Edward J. Wollack,et al.  INTERPRETATION OF THE ARCADE 2 ABSOLUTE SKY BRIGHTNESS MEASUREMENT , 2011 .

[27]  Edward J. Wollack,et al.  ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3–90 GHz , 2009, The Astrophysical Journal.

[28]  J. May,et al.  All-sky Galactic radiation at 45 MHz and spectral index between 45 and 408 MHz , 2010, 1011.4298.

[29]  A. Rogers,et al.  A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.

[30]  Edward J. Wollack,et al.  ARCADE 2 OBSERVATIONS OF GALACTIC RADIO EMISSION , 2009, 0901.0562.

[31]  Edward J. Wollack,et al.  Preprint typeset using L ATEX style emulateapj v. 10/09/06 ARCADE 2 MEASUREMENT OF THE EXTRA-GALACTIC SKY TEMPERATURE AT 3-90 GHZ , 2009 .

[32]  Judd D. Bowman,et al.  FOREGROUND CONTAMINATION IN INTERFEROMETRIC MEASUREMENTS OF THE REDSHIFTED 21 cm POWER SPECTRUM , 2008, 0807.3956.

[33]  A. Rogers,et al.  SPECTRAL INDEX OF THE DIFFUSE RADIO BACKGROUND MEASURED FROM 100 TO 200 MHz , 2008, 0806.2868.

[34]  Max Tegmark,et al.  A model of diffuse Galactic radio emission from 10 MHz to 100 GHz , 2008, 0802.1525.

[35]  J. Hewitt,et al.  Toward Empirical Constraints on the Global Redshifted 21 cm Brightness Temperature During the Epoch of Reionization , 2007, 0710.2541.

[36]  M. Bersanelli,et al.  Full sky study of diffuse Galactic emission at decimeter wavelenghts , 2003, astro-ph/0303031.

[37]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[38]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[39]  K. Maeda,et al.  A 45-MHz continuum survey of the northern hemisphere , 1997 .

[40]  R. Davies,et al.  Galactic synchrotron emission at high frequencies , 1996 .

[41]  J. Baldwin,et al.  The spectrum of the radio background between 13 and 404 MHz , 1967 .

[42]  A. Turtle,et al.  The Spectrum of the Galactic Radio Emission: I. Observations of Low Resolving Power , 1962 .

[43]  Willmar K. Roberts,et al.  A New Wide-Band Balun , 1957, Proceedings of the IRE.