A structure theory for two-dimensional translation planes of order q2 that admit collineation groups of order q2
暂无分享,去创建一个
[1] B. Huppert. Endliche Gruppen I , 1967 .
[2] Theresa P. Vaughn. Polynomials and linear transformations over finite fields. , 1974 .
[3] Baer p-elements in translation planes , 1974 .
[4] W. Kantor. On point-transitive affine planes , 1982 .
[5] F. W. Wilke,et al. A characterization of «likeable» translation planes , 1983 .
[6] M. Ganley. On likeable translation planes of even order , 1983 .
[7] C. Bartolone. On some Translation Planes Admitting a Frobenius Group of Collineations , 1983 .
[8] F. W. Wilke,et al. On translation planes of orderq2 that admit a group of orderq2 (q−1); bartolone's theorem , 1984 .
[9] Norman L. Johnson,et al. Translation planes of order q2 that admit a collineation group of order q2 , 1984 .
[10] Norman L. Johnson,et al. Some unusual translation planes of order 64 , 1984 .
[11] M. Biliotti,et al. On a generalization of Kantor's likeable planes , 1985 .
[12] A note on finite semifield planes that admit affine homologies , 1985 .
[13] V. Jha,et al. On spreads in PG (3,2 s ) that admit projective groups of order 2 s , 1985 .
[14] N. L. Johnson. Lezioni sui piani di traslazione , 1986 .
[15] G. Menichetti. Roots of Affine Polynomials , 1986 .
[16] V. Jha,et al. Baer Involutions in Translation Planes Admitting Large Elation Groups , 1987 .
[17] H. Gevaert,et al. Flocks of quadratic cones, generalized quadrangles and translation planes , 1988 .
[18] Norman L. Johnson,et al. 8 Semifield Planes of Order 82 , 1990, Discret. Math..