Molecular dynamics study of the mechanical loss in amorphous pure and doped silica.

Gravitational wave detectors and other precision measurement devices are limited by the thermal noise in the oxide coatings on the mirrors of such devices. We have investigated the mechanical loss in amorphous oxides by calculating the internal friction using classical, atomistic molecular dynamics simulations. We have implemented the trajectory bisection method and the non-local ridge method in the DL-POLY molecular dynamics simulation software to carry out those calculations. These methods have been used to locate the local potential energy minima that a system visits during a molecular dynamics trajectory and the transition state between any two consecutive minima. Using the numerically calculated barrier height distributions, barrier asymmetry distributions, relaxation times, and deformation potentials, we have calculated the internal friction of pure amorphous silica and silica mixed with other oxides. The results for silica compare well with experiment. Finally, we use the numerical calculations to comment on the validity of previously used theoretical assumptions.

[1]  I. Martin,et al.  Low temperature mechanical dissipation of an ion-beam sputtered silica film , 2014 .

[2]  J. Trinastic,et al.  Unified interatomic potential and energy barrier distributions for amorphous oxides. , 2013, The Journal of chemical physics.

[3]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[4]  M. Fejer,et al.  Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2 , 2009 .

[5]  R. Devanathan,et al.  Unified interatomic potential for zircon, zirconia and silica systems , 2009 .

[6]  Jun Ye,et al.  Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers , 2006 .

[7]  A. Heuer,et al.  Local properties of the potential-energy landscape of a model glass: Understanding the low-temperature anomalies , 2004, cond-mat/0403657.

[8]  A. Heuer,et al.  Energy barriers and activated dynamics in a supercooled Lennard-Jones liquid. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  M. Fejer,et al.  Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors , 2002 .

[10]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[11]  M. Fejer,et al.  Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror , 2001, gr-qc/0105046.

[12]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[13]  Wiedersich,et al.  Spectral shape of relaxations in silica glass , 1999, Physical review letters.

[14]  W Smith,et al.  DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. , 1996, Journal of molecular graphics.

[15]  D. Cahill,et al.  Elastic properties of several amorphous solids and disordered crystals below 100 K , 1996 .

[16]  J. Cleve,et al.  Glasslike elastic properties in the ω-β alloys , 1994 .

[17]  Merz,et al.  Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures. , 1992, Physical review. B, Condensed matter.

[18]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[19]  Kramer,et al.  Force fields for silicas and aluminophosphates based on ab initio calculations. , 1990, Physical review letters.

[20]  J. Cleve,et al.  Torsional oscillator for internal friction data at 100 kHz , 1989 .

[21]  M. Meissner,et al.  How universal are the low temperature acoustic properties of glasses? , 1988 .

[22]  A. Raychaudhuri,et al.  Low frequency elastic properties of glasses at low temperatures—implications on the tunneling model , 1984 .

[23]  S. Hunklinger,et al.  Pressure Dependence of the Low Temperature Acoustic Anomalies in Vitreous Silica , 1982 .

[24]  W. Phillips,et al.  An asymmetric double-well potential model for structural relaxation processes in amorphous materials. , 1981 .

[25]  J. Jäckle On the ultrasonic attenuation in glasses at low temperatures , 1972 .

[26]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[27]  O. Anderson,et al.  Ultrasonic Absorption in Fused Silica at Low Temperatures and High Frequencies , 1955 .

[28]  M. Fine,et al.  Low‐Temperature Internal Friction and Elasticity Effects in Vitreous Silica , 1954 .

[29]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[30]  W. Kauzmann Dielectric Relaxation as a Chemical Rate Process , 1942 .

[31]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .