Stabilization of the Schrodinger equation with a delay term in boundary feedback or internal feedback
暂无分享,去创建一个
[1] Genqi Xu,et al. Stabilization of wave systems with input delay in the boundary control , 2006 .
[2] R. Datko. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks , 1988 .
[3] E. Zuazua,et al. Stabilization of the Schrödinger equation. , 1994 .
[4] R. Triggiani. Exact Controllability in L 2 (Ω) of the Schrödinger Equation in a Riemannian Manifold with L 2 (Σ 1 )-Neumann Boundary Control , 2007 .
[5] José Barros-Neto,et al. Problèmes aux limites non homogènes , 1966 .
[6] Serge Nicaise,et al. Stability and Instability Results of the Wave Equation with a Delay Term in the Boundary or Internal Feedbacks , 2006, SIAM J. Control. Optim..
[7] Jacques-Louis Lions. Contrôlabilite exacte et homogénéisation (I) , 1988 .
[8] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[9] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[10] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[11] Michael P. Polis,et al. An example on the effect of time delays in boundary feedback stabilization of wave equations , 1986 .
[12] Yuncheng You,et al. Some second-order vibrating systems cannot tolerate small time delays in their damping , 1991 .
[13] R. Triggiani,et al. Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part II: L 2(Ω)-estimates , 2004 .
[14] Serge Nicaise,et al. STABILIZATION OF SECOND ORDER EVOLUTION EQUATIONS WITH UNBOUNDED FEEDBACK WITH DELAY , 2010 .
[15] Elaine Machtyngier,et al. Exact Controllability for the Schrodinger Equation , 1994 .
[16] P. Yao,et al. Inverse / observability estimates for Schrodinger equations with variable coefficients 1 by R , 2013 .
[17] R. Triggiani,et al. Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: H 1(Ω)-estimates , 2004 .
[18] Gerd Grubb,et al. PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .