Stabilization of the Schrodinger equation with a delay term in boundary feedback or internal feedback

In this paper, we investigate the eect of time delays in boundary or internal feedback stabilization of the Schrodinger equation. In both cases, under suitable assump- tions, we establish su‰cient conditions on the delay term that guarantee the exponential stability of the solution. These results are obtained by using suitable energy functionals and some observability estimates.

[1]  Genqi Xu,et al.  Stabilization of wave systems with input delay in the boundary control , 2006 .

[2]  R. Datko Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks , 1988 .

[3]  E. Zuazua,et al.  Stabilization of the Schrödinger equation. , 1994 .

[4]  R. Triggiani Exact Controllability in L 2 (Ω) of the Schrödinger Equation in a Riemannian Manifold with L 2 (Σ 1 )-Neumann Boundary Control , 2007 .

[5]  José Barros-Neto,et al.  Problèmes aux limites non homogènes , 1966 .

[6]  Serge Nicaise,et al.  Stability and Instability Results of the Wave Equation with a Delay Term in the Boundary or Internal Feedbacks , 2006, SIAM J. Control. Optim..

[7]  Jacques-Louis Lions Contrôlabilite exacte et homogénéisation (I) , 1988 .

[8]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[9]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[10]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[11]  Michael P. Polis,et al.  An example on the effect of time delays in boundary feedback stabilization of wave equations , 1986 .

[12]  Yuncheng You,et al.  Some second-order vibrating systems cannot tolerate small time delays in their damping , 1991 .

[13]  R. Triggiani,et al.  Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part II: L 2(Ω)-estimates , 2004 .

[14]  Serge Nicaise,et al.  STABILIZATION OF SECOND ORDER EVOLUTION EQUATIONS WITH UNBOUNDED FEEDBACK WITH DELAY , 2010 .

[15]  Elaine Machtyngier,et al.  Exact Controllability for the Schrodinger Equation , 1994 .

[16]  P. Yao,et al.  Inverse / observability estimates for Schrodinger equations with variable coefficients 1 by R , 2013 .

[17]  R. Triggiani,et al.  Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: H 1(Ω)-estimates , 2004 .

[18]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .