Compile-Time Query Optimization for Big Data Analytics
暂无分享,去创建一个
[1] Aart J. C. Bik,et al. Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.
[2] Christopher Olston,et al. Building a HighLevel Dataflow System on top of MapReduce: The Pig Experience , 2009, Proc. VLDB Endow..
[3] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[4] Dominic Battré,et al. Nephele/PACTs: a programming model and execution framework for web-scale analytical processing , 2010, SoCC '10.
[5] Jimmy J. Lin,et al. Summingbird: A Framework for Integrating Batch and Online MapReduce Computations , 2014, Proc. VLDB Endow..
[6] Thomas Neumann,et al. Efficiently Compiling Efficient Query Plans for Modern Hardware , 2011, Proc. VLDB Endow..
[7] Kunle Olukotun,et al. Delite , 2014, ACM Trans. Embed. Comput. Syst..
[8] Ravi Kumar,et al. Pig latin: a not-so-foreign language for data processing , 2008, SIGMOD Conference.
[9] Simon Peyton Jones,et al. Comprehensive Comprehensions Comprehensions with 'Order by' and 'Group by' , 2007 .
[10] David Maier,et al. Optimizing object queries using an effective calculus , 2000, TODS.
[11] Leonidas Fegaras,et al. Compile-Time Code Generation for Embedded Data-Intensive Query Languages , 2018, 2018 IEEE International Congress on Big Data (BigData Congress).
[12] Christos Faloutsos,et al. R-MAT: A Recursive Model for Graph Mining , 2004, SDM.
[13] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[14] Daniel Lemire,et al. Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources , 2018, SIGMOD Conference.
[15] Leonidas Fegaras,et al. An algebra for distributed Big Data analytics , 2017, Journal of Functional Programming.
[16] Chengkai Li,et al. An optimization framework for map-reduce queries , 2012, EDBT '12.
[17] Volker Markl,et al. Emma in Action: Declarative Dataflows for Scalable Data Analysis , 2016, SIGMOD Conference.
[18] Jacek Sroka,et al. Representing MapReduce Optimisations in the Nested Relational Calculus , 2013, BNCOD.
[19] Jignesh M. Patel,et al. The Case Against Specialized Graph Analytics Engines , 2015, CIDR.
[20] Michael Isard,et al. Distributed data-parallel computing using a high-level programming language , 2009, SIGMOD Conference.
[21] Michael Stonebraker,et al. VERTEXICA: Your Relational Friend for Graph Analytics! , 2014, Proc. VLDB Endow..
[22] Jingren Zhou,et al. SCOPE: easy and efficient parallel processing of massive data sets , 2008, Proc. VLDB Endow..
[23] Michael Isard,et al. DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language , 2008, OSDI.
[24] Yuan Yu,et al. Dryad: distributed data-parallel programs from sequential building blocks , 2007, EuroSys '07.
[25] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[26] Michael Grossniklaus,et al. Optimization of Nested Queries using the NF2 Algebra , 2016, SIGMOD Conference.
[27] Tiark Rompf,et al. Jet: An Embedded DSL for High Performance Big Data Processing , 2012 .
[28] Pete Wyckoff,et al. Hive - A Warehousing Solution Over a Map-Reduce Framework , 2009, Proc. VLDB Endow..
[29] Joseph K. Bradley,et al. Spark SQL: Relational Data Processing in Spark , 2015, SIGMOD Conference.
[30] Philip Wadler,et al. Comprehending monads , 1990, LISP and Functional Programming.
[31] Volker Markl,et al. Implicit Parallelism through Deep Language Embedding , 2016, SGMD.