Simplified and Improved Separations Between Regular and General Resolution by Lifting

We give a significantly simplified proof of the exponential separation between regular and general resolution of Alekhnovich et al. (2007) as a consequence of a general theorem lifting proof depth to regular proof length in resolution. This simpler proof then allows us to strengthen the separation further, and to construct families of theoretically very easy benchmarks that are surprisingly hard for SAT solvers in practice.

[1]  Gilles Audemard,et al.  Predicting Learnt Clauses Quality in Modern SAT Solvers , 2009, IJCAI.

[2]  Chris Beck,et al.  Some trade-off results for polynomial calculus: extended abstract , 2013, STOC '13.

[3]  Michael Alekhnovich,et al.  Exponential Lower Bounds for the Running Time of DPLL Algorithms on Satisfiable Formulas , 2004, SODA '04.

[4]  Eli Ben-Sasson,et al.  Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..

[5]  Arkadev Chattopadhyay,et al.  Simulation beats richness: new data-structure lower bounds , 2018, Electron. Colloquium Comput. Complex..

[6]  Christoph Berkholz,et al.  Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement Steps , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[7]  Marc Vinyals,et al.  CNFgen: A Generator of Crafted Benchmarks , 2017, SAT.

[8]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[9]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[10]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[11]  Archie Blake Canonical expressions in Boolean algebra , 1938 .

[12]  Toniann Pitassi,et al.  Query-to-Communication Lifting for P^NP , 2017, Electron. Colloquium Comput. Complex..

[13]  Adnan Darwiche,et al.  On the power of clause-learning SAT solvers as resolution engines , 2011, Artif. Intell..

[14]  Toniann Pitassi,et al.  Hardness amplification in proof complexity , 2009, STOC '10.

[15]  Toniann Pitassi,et al.  Exponential Lower Bounds for Monotone Span Programs , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[16]  Andreas Goerdt Regular Resolution Versus Unrestricted Resolution , 1993, SIAM J. Comput..

[17]  Michael Alekhnovich,et al.  An exponential separation between regular and general resolution , 2002, STOC '02.

[18]  Stephen A. Cook,et al.  An observation on time-storage trade off , 1973, J. Comput. Syst. Sci..

[19]  Samuel R. Buss,et al.  Small Stone in Pool , 2014, Log. Methods Comput. Sci..

[20]  Ankit Garg,et al.  Monotone circuit lower bounds from resolution , 2018, Electron. Colloquium Comput. Complex..

[21]  Eli Ben-Sasson,et al.  Short Proofs May Be Spacious: An Optimal Separation of Space and Length in Resolution , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Robert E. Tarjan,et al.  Variations of a pebble game on graphs , 1978 .

[23]  Jakob Nordström,et al.  On the virtue of succinct proofs: amplifying communication complexity hardness to time-space trade-offs in proof complexity , 2012, STOC '12.

[24]  Russell Impagliazzo,et al.  Time-space tradeoffs in resolution: superpolynomial lower bounds for superlinear space , 2012, STOC '12.

[25]  Toniann Pitassi,et al.  Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity , 2005, ICALP.

[26]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[27]  Rahul Jain,et al.  Extension Complexity of Independent Set Polytopes , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[28]  Samuel R. Buss,et al.  Improved Separations of Regular Resolution from Clause Learning Proof Systems , 2012, J. Artif. Intell. Res..

[29]  Jakob Nordström,et al.  Narrow proofs may be spacious: separating space and width in resolution , 2006, STOC '06.

[30]  Toniann Pitassi,et al.  Strongly exponential lower bounds for monotone computation , 2017, Electron. Colloquium Comput. Complex..

[31]  Maria Luisa Bonet,et al.  On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems , 2000, SIAM J. Comput..

[32]  Siu Man Chan Just a Pebble Game , 2013, 2013 IEEE Conference on Computational Complexity.

[33]  Johannes Klaus Fichte,et al.  Clause-Learning Algorithms with Many Restarts and Bounded-Width Resolution , 2011, J. Artif. Intell. Res..

[34]  Toniann Pitassi,et al.  Query-to-Communication Lifting for PNP , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[35]  Shachar Lovett,et al.  Rectangles Are Nonnegative Juntas , 2015, SIAM J. Comput..

[36]  Toniann Pitassi,et al.  Randomized Communication vs. Partition Number , 2015, Electron. Colloquium Comput. Complex..

[37]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[38]  Ran Raz,et al.  Separation of the Monotone NC Hierarchy , 1999, Comb..

[39]  Eli Ben-Sasson,et al.  Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions , 2011, ICS.

[40]  Johan Håstad,et al.  Towards an optimal separation of space and length in resolution , 2008, Theory Comput..

[41]  Toniann Pitassi,et al.  Communication lower bounds via critical block sensitivity , 2013, STOC.

[42]  Alasdair Urquhart The Depth of Resolution Proofs , 2011, Stud Logica.

[43]  Jesús Giráldez-Cru,et al.  Seeking Practical CDCL Insights from Theoretical SAT Benchmarks , 2018, IJCAI.

[44]  Eli Ben-Sasson,et al.  Space complexity of random formulae in resolution , 2003, Random Struct. Algorithms.

[45]  Xiangdong Yu,et al.  A DNF without Regular Shortest Consensus Path , 1987, SIAM J. Comput..

[46]  Marc Vinyals,et al.  Hardness of Approximation in PSPACE and Separation Results for Pebble Games , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[47]  Toniann Pitassi,et al.  Lifting Nullstellensatz to monotone span programs over any field , 2018, Electron. Colloquium Comput. Complex..

[48]  Christoph Berkholz,et al.  Supercritical Space-Width Trade-offs for Resolution , 2016, Electron. Colloquium Comput. Complex..

[49]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[50]  Allen Van Gelder,et al.  Pool Resolution and Its Relation to Regular Resolution and DPLL with Clause Learning , 2005, LPAR.

[51]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[52]  Alexander A. Razborov On Space and Depth in Resolution , 2017, computational complexity.

[53]  Toniann Pitassi,et al.  Deterministic Communication vs. Partition Number , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[54]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[55]  ALASDAIR URQUHART A Near-Optimal Separation of Regular and General Resolution , 2011, SIAM J. Comput..

[56]  Stanislav Zivny,et al.  Relating Proof Complexity Measures and Practical Hardness of SAT , 2012, CP.

[57]  Alexander A. Razborov,et al.  A New Kind of Tradeoffs in Propositional Proof Complexity , 2016, J. ACM.

[58]  Russell Impagliazzo,et al.  Time-Space Trade-offs in Resolution: Superpolynomial Lower Bounds for Superlinear Space , 2016, SIAM J. Comput..

[59]  Toniann Pitassi,et al.  The Landscape of Communication Complexity Classes , 2018, computational complexity.

[60]  Prasad Raghavendra,et al.  Approximating rectangles by juntas and weakly-exponential lower bounds for LP relaxations of CSPs , 2016, STOC.

[61]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[62]  Samuel R. Buss,et al.  Resolution Trees with Lemmas: Resolution Refinements that Characterize DLL Algorithms with Clause Learning , 2008, Log. Methods Comput. Sci..

[63]  Marc Vinyals,et al.  How Limited Interaction Hinders Real Communication (and What It Means for Proof and Circuit Complexity) , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).