A comparative genomics approach for studying ancestral proteins and evolution.

[1]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[2]  I D Campbell,et al.  The structure and function of protein modules. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  J. Gogarten,et al.  Orthologs, paralogs and genome comparisons. , 1999, Current opinion in genetics & development.

[4]  P Bork,et al.  On the Classification and Evolution of Protein Modules , 1997, Journal of protein chemistry.

[5]  M. Riley,et al.  Interim report on genomics of Escherichia coli. , 2000, Annual review of microbiology.

[6]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[7]  E. Koonin,et al.  DNA-binding proteins and evolution of transcription regulation in the archaea. , 1999, Nucleic acids research.

[8]  G. Gonnet,et al.  Exhaustive matching of the entire protein sequence database. , 1992, Science.

[9]  P. Christen,et al.  Aminotransferases: demonstration of homology and division into evolutionary subgroups. , 1993, European journal of biochemistry.

[10]  M Kanehisa,et al.  A comparative analysis of ABC transporters in complete microbial genomes. , 1998, Genome research.

[11]  M Kanehisa Grand challenges in bioinformatics. , 1998, Bioinformatics.

[12]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[13]  P. Bork,et al.  Ancient duplication of DNA polymerase inferred from analysis of complete bacterial genomes. , 1996, Trends in biochemical sciences.

[14]  M. Berlyn Linkage Map of Escherichia coli K-12, Edition 10: The Traditional Map , 1998, Microbiology and Molecular Biology Reviews.

[15]  M. Riley,et al.  Gene products of Escherichia coli: sequence comparisons and common ancestries. , 1995, Molecular biology and evolution.

[16]  D. Hughes,et al.  Comparison of the complete sequence of the str operon in Salmonella typhimurium and Escherichia coli. , 1992, Gene.

[17]  K. Axelsen,et al.  Evolution of Substrate Specificities in the P-Type ATPase Superfamily , 1998, Journal of Molecular Evolution.

[18]  Xianghong Zhou,et al.  A cross-comparison of a large dataset of genes , 2000, Bioinform..

[19]  A. Furano The elongation factor Tu coded by the tufA gene of Escherichia coli K-12 is almost identical to that coded by the tufB gene. , 1977, The Journal of biological chemistry.

[20]  Russell F. Doolittle,et al.  Microbial genomes opened up , 1998, Nature.

[21]  Michael Y. Galperin,et al.  Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. , 1999, Genome research.

[22]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[23]  Gaston H. Gonnet,et al.  Darwin v. 2.0: an interpreted computer language for the biosciences , 2000, Bioinform..

[24]  J. Knappe,et al.  Pyruvate‐formate‐lyase‐deactivase and acetyl‐CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE , 1991, FEBS letters.

[25]  J. Gogarten,et al.  Horizontal transfer of ATPase genes--the tree of life becomes a net of life. , 1993, Bio Systems.

[26]  H. Schulz,et al.  Evidence that the fadB gene of the fadAB operon of Escherichia coli encodes 3-hydroxyacyl-coenzyme A (CoA) epimerase, delta 3-cis-delta 2-trans-enoyl-CoA isomerase, and enoyl-CoA hydratase in addition to 3-hydroxyacyl-CoA dehydrogenase , 1988, Journal of bacteriology.

[27]  Eric S. Lander,et al.  Journey to the Center of Biology , 2000, Science.

[28]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .

[29]  E. Koonin,et al.  Eukaryotic transcription regulators derive from ancient enzymatic domains , 1998, Current Biology.

[30]  E. Koonin,et al.  The Impact of Comparative Genomics on Our Understanding of Evolution , 2000, Cell.

[31]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[32]  M. Riley,et al.  Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. , 1997, Journal of molecular biology.

[33]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[34]  A. Mushegian,et al.  The minimal genome concept. , 1999, Current opinion in genetics & development.

[35]  E. Pennisi Is It Time to Uproot the Tree of Life? , 1999, Science.

[36]  G. Müller-Newen,et al.  Site-directed mutagenesis of putative active-site amino acid residues of 3,2-trans-enoyl-CoA isomerase, conserved within the low-homology isomerase/hydratase enzyme family. , 1993, Biochemistry.

[37]  C. Sander,et al.  Computational comparisons of model genomes. , 1996, Trends in biotechnology.

[38]  K. Axelsen,et al.  Evolution of P-type ATPases. , 1998, Biochimica et biophysica acta.

[39]  R. L. Charlebois Organization of the Prokaryotic Genome , 1999 .

[40]  E V Koonin,et al.  Complete genome sequences of cellular life forms: glimpses of theoretical evolutionary genomics. , 1996, Current opinion in genetics & development.

[41]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[42]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[43]  M. Riley,et al.  Widespread protein sequence similarities: origins of Escherichia coli genes , 1995, Journal of bacteriology.

[44]  G. B. Golding,et al.  The mosaic nature of the eukaryotic nucleus. , 1998, Molecular biology and evolution.

[45]  M. Riley,et al.  Divergence of function in sequence-related groups of Escherichia coli proteins. , 2001, Genome research.