Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications

The endoskeleton of echinoderms (Deuterostomia: Echinodermata) is of mesodermal origin and consists of cells, organic components, as well as an inorganic mineral matrix. The echinoderm skeleton forms a complex lattice-system, which represents a model structure for naturally inspired engineering in terms of construction, mechanical behaviour, and functional design. The sea urchin (Echinodermata: Echinoidea) endoskeleton consists of three main structural components: test, dental apparatus, and accessory appendages. Although, all parts of the echinoid skeleton consist of the same basic material, their microstructure displays a great potential in meeting several mechanical needs according to a direct and clear structure-function relationship. This versatility has allowed the echinoid skeleton to adapt to different activities such as structural support, defence, feeding, burrowing, and cleaning. Although, constrained by energy and resource efficiency, many of the structures found in the echinoid skeleton are optimized in terms of functional performances. Therefore, these structures can be used as role models for bio-inspired solutions in various industrial sectors such as building constructions, robotics, biomedical and material engineering. The present review provides an overview of previous mechanical and biomimetic research on the echinoid endoskeleton, describing the current state of knowledge and providing a reference for future studies.

[1]  A. Heuer,et al.  The structure of sea urchin spines, large biogenic single crystals of calcite , 2000 .

[2]  Margit Jensen,et al.  The ultrastructure of the echinoid skeleton , 1972 .

[3]  A. C. Campbell,et al.  Observations on the activity of echinoid pedicellariae: III. Jaw responses of globiferous pedicellariae and their significance , 1976 .

[4]  Ekkehard Ramm,et al.  Layout of Linear and Nonlinear Structures by Shape and Topology Optimization , 1996 .

[5]  R. Coleman Ultrastructure of the tube foot wall of a regular echinoid,Diadema antillarum Philippi , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[6]  A. Gale,et al.  Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies , 2001, Paleobiology.

[7]  A. C. Campbell,et al.  The role of pedicellariae in preventing barnacle settlement on the sea‐urchin test , 1977 .

[8]  A. Smith,et al.  The test architecture of Clypeaster (Echinoidea, Clypeasteroida) and its phylogenetic significance , 2011 .

[9]  Thomas Speck,et al.  Process Sequences In Biomimetic Research , 2008 .

[10]  J. Grossmann,et al.  Echinoderms: Hierarchically Organized Light Weight Skeletons , 2015 .

[11]  Rizhi Wang Fracture Toughness and Interfacial Design of a Biological Fiber‐Matrix Ceramic Composite in Sea Urchin Teeth , 2005 .

[12]  M. Burghammer,et al.  Structure-property relationships of a biological mesocrystal in the adult sea urchin spine , 2012, Proceedings of the National Academy of Sciences.

[13]  Uta Magdans,et al.  Single crystal structure analysis of sea urchin spine calcites: Systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine , 2004 .

[14]  B. David,et al.  Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea) , 2006, Geological Magazine.

[15]  O. Ellers A mechanical model of growth in regular sea urchins: predictions of shape and a developmental morphospace , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  Petra Gruber,et al.  A gaze into the crystal ball: Biomimetics in the year 2059 , 2009 .

[17]  A. C. Campbell,et al.  Observations on the Activity of Echinoid Pedicellariae , 1973 .

[18]  A. P. Wheeler,et al.  Analysis and function of organic matrix from sea urchin tests , 1986 .

[19]  J. Currey The design of mineralised hard tissues for their mechanical functions. , 1999, The Journal of experimental biology.

[20]  Y. Oaki,et al.  Nanoengineering in echinoderms: the emergence of morphology from nanobricks. , 2006, Small.

[21]  M. Jangoux,et al.  Functional morphology of the pedicellariae of the asteroid Marthasterias glacialis (Echinodermata) , 1984, Zoomorphology.

[22]  I. Wilkie,et al.  A biomechanical comparison of the lantern of the cidarid sea‐urchin Stylocidaris affinis with the typical camarodont lantern , 1993 .

[23]  R. Mooi Paedomorphosis, Aristotle's lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida) , 1990, Paleobiology.

[24]  S. Stock,et al.  Microstructures of Antarctic cidaroid spines: diversity of shapes and ectosymbiont attachments , 2009 .

[25]  P. Guidetti,et al.  Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators , 2005 .

[26]  J. D. Del Castillo,et al.  The attachment of collagenous ligament to stereom in primary spines of the sea-urchin, Eucidaris tribuloides. , 1990, Tissue & cell.

[27]  E. Carrington,et al.  Spine reorientation influences drift particle capture efficiency in sea urchins , 2014 .

[28]  P. Kier Evolutionary Trends and Their Functional Significance in the Post-Paleozoic Echinoids , 1974, Journal of Paleontology.

[29]  A. C. Campbell,et al.  The responses of pedicellariae from Echinus esculentus (L.) , 1968 .

[30]  W. Nachtigall,et al.  Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study , 1996, Zoomorphology.

[31]  H. Leddy,et al.  Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  H. Stewart,et al.  Streamlining behaviour of the red urchin Strongylocentrotus franciscanus in response to flow , 2011, Journal of Experimental Biology.

[33]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[34]  O. Ellers,et al.  Muscles advance the teeth in sand dollars and other sea urchins , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  J. Dafni A biomechanical model for the morphogenesis of regular echinoid tests , 1986, Paleobiology.

[36]  A. B. Sofoluwe,et al.  Echinodome: Some approaches to the analysis of the drop-shaped tank , 1981 .

[37]  A. Smith The Structure and Arrangement of Echinoid Tubercles , 1980 .

[38]  S. Oldfield Surface fine structure of the globiferous pedicellariae of the regular echinoid, Psammechinus miliaris gmelin , 1975, Cell and Tissue Research.

[39]  I. Goodbody THE FEEDING MECHANISM IN THE SAND DOLLAR MELLITA SEXIESPERFORATA (LESKE) , 1960 .

[40]  I. Wilkie Variable tensility in echinoderm collagenous tissues: A review , 1984 .

[41]  S. J. Salter II. On the structure and growth of the tooth of Echinus , 1862, Proceedings of the Royal Society of London.

[42]  Z. Stachurski,et al.  Micromechanics of Sea Urchin Spines , 2012, PloS one.

[43]  R. Mooi Structure and function of clypeasteroid miliary spines (Echinodermata, Echinoides) , 1986, Zoomorphology.

[44]  Qiang Chen,et al.  Bio-mimetic mechanisms of natural hierarchical materials: a review. , 2013, Journal of the mechanical behavior of biomedical materials.

[45]  L. Hiratzka,et al.  In vivo comparison of replamineform, Silastic, and bioelectric polyurethane arterial grafts. , 1979, Archives of surgery.

[46]  A. Seilacher,et al.  Constructional morphology of sand dollars , 1979, Paleobiology.

[47]  S J Leigh,et al.  Rapid manufacture of monolithic micro-actuated forceps inspired by echinoderm pedicellariae , 2012, Bioinspiration & biomimetics.

[48]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[49]  O. Ellers,et al.  FORCES GENERATED BY THE JAWS OF CLYPEASTEROIDS (ECHINODERMATA: ECHINOIDEA) , 1991 .

[50]  C. Berthold,et al.  Lessons from Nature for the Construction of Ceramic Cellular Materials for Superior Energy Absorption , 2011 .

[51]  S. Coppard,et al.  The evolution of pedicellariae in echinoids: an arms race against pests and parasites , 2012 .

[52]  H. Espinosa,et al.  In situ Wear Study Reveals Role of Microstructure on Self-Sharpening Mechanism in Sea Urchin Teeth , 2019, Matter.

[53]  R. Mooi Non-respiratory podia of clypeasteroids (Echinodermata, Echinoides): II. Diversity , 1986, Zoomorphology.

[54]  P. Dubois,et al.  Attachment capacity of the sea urchin Paracentrotus lividus in a range of seawater velocities in relation to test morphology and tube foot mechanical properties , 2017 .

[55]  F. Clarke,et al.  The inorganic constituents of marine invertebrates (second edition, revised and enlarged) , 1922 .

[56]  Julian Vincent,et al.  Biomimetic Patterns in Architectural Design , 2009 .

[57]  Améziane Aoussat,et al.  Biomimetics: process, tools and practice , 2017, Bioinspiration & biomimetics.

[58]  Ture Wester,et al.  Nature Teaching Structures , 2002 .

[59]  Jennifer R. A. Taylor,et al.  A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws. , 2016, Journal of visualized experiments : JoVE.

[60]  A. Shatsov Mechanical Properties of Porous Materials , 2003 .

[61]  A. C. Campbell,et al.  Observations on the activity of echinoid pedicellariae II. Jaw responses of tridentate and ophiocephalous pedicellariae , 1974 .

[62]  Julian F.V. Vincent,et al.  Biomimetics in architectural design , 2016 .

[63]  P. Kier Evolutionary trends in Paleozoic echinoids , 1965 .

[64]  K. Märkel,et al.  The sphaeridia of sea urchins: ultrastructure and supposed function (Echinodermata, Echinoida) , 1992, Zoomorphology.

[65]  F. De Carlo,et al.  Structures, structural hierarchy, and function in sea urchin spines , 2006, SPIE Optics + Photonics.

[66]  L. Qi,et al.  Biomineralization of sea urchin teeth , 2010 .

[67]  J. Currey,et al.  Strength of Bone , 1962, Nature.

[68]  A. Willgallis,et al.  Polykristalliner Calcit bei Seeigeln (Echinodermata, Echinoidea) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[69]  David L. Pawson,et al.  X-ray Diffraction Studies of Echinoderm Plates , 1969, Science.

[70]  Thomas Speck,et al.  Plants and Animals as Source of Inspiration for Energy Dissipation in Load Bearing Systems and Facades , 2016 .

[71]  Tobias B. Grun,et al.  Structural design of the minute clypeasteroid echinoid Echinocyamus pusillus , 2018, Royal Society Open Science.

[72]  M. Barbosa,et al.  New Insights into Mutable Collagenous Tissue: Correlations between the Microstructure and Mechanical State of a Sea-Urchin Ligament , 2011, PloS one.

[73]  Werner Hansmann,et al.  Mechanical design in spines of diadematoid echinoids (Echinodermata, Echinoidea) , 1983, Zoomorphology.

[74]  A. Smith,et al.  The phylogeny and classification of post-Palaeozoic echinoids , 2010 .

[75]  Geometric morphometrics of nested symmetries unravels hierarchical inter- and intra-individual variation in biological shapes , 2018, Scientific Reports.

[76]  T. Ebert Chapter 6 Growth and survival of postsettlement sea urchins , 2007 .

[77]  R. Mooi,et al.  RESOURCE PARTITIONING BY SAND DOLLARS IN CARBONATE AND SILICEOUS SEDIMENTS: EVIDENCE FROM PODIAL AND PARTICLE DIMENSIONS , 1986 .

[78]  Jan Knippers,et al.  Segmental Timber Plate Shell for the Landesgartenschau Exhibition Hall in Schwäbisch Gmünd—the Application of Finger Joints in Plate Structures , 2015 .

[79]  M. Arnone,et al.  Unique system of photoreceptors in sea urchin tube feet , 2011, Proceedings of the National Academy of Sciences.

[80]  J. Nebelsick,et al.  Towards a theoretical clarification of biomimetics using conceptual tools from engineering design , 2017, Bioinspiration & biomimetics.

[81]  Jan Knippers,et al.  Design and construction principles in nature and architecture. , 2012, Bioinspiration & biomimetics.

[82]  L. Zachos Holistic morphometric analysis of growth of the sand dollar Echinarachnius parma (Echinodermata:Echinoidea:Clypeasteroida). , 2015, Zootaxa.

[83]  K. Okazaki Spicule Formation by Isolated Micromeres of the Sea Urchin Embryo , 1975 .

[84]  Tobias B. Grun,et al.  Structural stress response of segmented natural shells: a numerical case study on the clypeasteroid echinoid Echinocyamus pusillus , 2018, Journal of The Royal Society Interface.

[85]  S. Stipp,et al.  Microstructure and micromechanics of the heart urchin test from X-ray tomography. , 2015, Acta biomaterialia.

[86]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[87]  A. Coelho,et al.  Mapping sea urchins tube feet proteome--a unique hydraulic mechano-sensory adhesive organ. , 2013, Journal of proteomics.

[88]  Tobias B. Grun,et al.  Structural design of the echinoid’s trabecular system , 2018, PloS one.

[89]  K. Märkel Morphologie der seeigelzähne V. Die zahne der clypeastroida (echinodermata, echinoidea) , 1974, Zeitschrift für Morphologie der Tiere.

[90]  R. Piticescu,et al.  3D Bioprinting of Hybrid Materials for Regenerative Medicine: Implementation in Innovative Small and Medium-Sized Enterprises (SMEs) , 2018, JOM.

[91]  H. Espinosa,et al.  A Novel In Situ Experiment to Investigate Wear Mechanisms in Biomaterials , 2019, Experimental Mechanics.

[92]  I. Grosse,et al.  Requirements for comparing the performance of finite element models of biological structures. , 2009, Journal of theoretical biology.

[93]  C. Berthold,et al.  Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression , 2009 .

[94]  K. Märkel Morphologie der Seeigelzähne III. Die zähne der diadematoida und echinothuroida (Echinodermata, Echinoidea) , 1970, Zeitschrift für Morphologie der Tiere.

[95]  S. Stock,et al.  Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus. , 2005, Journal of structural biology.

[96]  Christian Hamm,et al.  Evolution of Lightweight Structures , 2015, Biologically-Inspired Systems.

[97]  Jan Knippers,et al.  Biomimetic Research for Architecture and Building Construction , 2016, Biologically-Inspired Systems.

[98]  K. Märkel,et al.  Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoida) , 1986, Zoomorphology.

[99]  P. Breedveld,et al.  Bioinspired Crown-Cutter—The Impact of Tooth Quantity and Bevel Type on Tissue Deformation, Penetration Forces, and Tooth Collapsibility , 2014 .

[100]  J. Lawrence,et al.  The ultrastructure of the plumula of the tooth of Lytechinus variegatus (Echinodermata: Echinoidea) , 1986 .

[101]  Christoph Lauer,et al.  Strength, elasticity and the limits of energy dissipation in two related sea urchin spines with biomimetic potential , 2018, Bioinspiration & biomimetics.

[102]  J. Weber,et al.  Unusual strength properties of echinoderm calcite related to structure. , 1969, Journal of ultrastructure research.

[103]  Neri Oxman,et al.  Variable property rapid prototyping , 2011 .

[104]  A. Abzhanov The old and new faces of morphology: the legacy of D'Arcy Thompson's ‘theory of transformations' and ‘laws of growth' , 2017, Development.

[105]  S. Kuwabara Purification and properties of peditoxin and the structure of its prosthetic group, pedoxin, from the sea urchin Toxopneustes pileolus (Lamarck). , 1994, The Journal of biological chemistry.

[106]  Tobias B. Grun,et al.  Morphology and porosity of the spines of the sea urchin Heterocentrotus mamillatus and their implications on the mechanical performance , 2018, Zoomorphology.

[107]  J. Stone,et al.  Classifying echinoid skeleton models: testing ideas about growth and form , 2011, Paleobiology.

[108]  K. Märkel,et al.  Calcite-resorption in the spine of the echinoid Eucidaris tribuloides , 1983, Zoomorphology.

[109]  I. Wilkie,et al.  Mechanical analysis of the sea‐urchin lantern: the overall system in Paracentrotus lividus , 1990 .

[110]  L. Gibson,et al.  Biomimicking of animal quills and plant stems: natural cylindrical shells with foam cores , 1994 .

[111]  J. Lawrence,et al.  The hardness of the teeth of five species of echinoids (Echinodermata) , 1985 .

[112]  S. Weiner,et al.  Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[113]  F. Bonasoro,et al.  Organization and mechanical behaviour of myocyte–ligament composites in a sea-urchin lantern: the compass depressors of Stylocidaris affinis (Echinodermata, Echinoida) , 1998, Zoomorphology.

[114]  M. S. Laverack,et al.  The lantern of Echinus esculentus (L. ) I. Gross anatomy and physiology , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[115]  A. C. Campbell,et al.  Taxonomic significance of spine morphology in the echinoid genera Diadema and Echinothrix , 2005 .

[116]  T. Ebert GROWTH AND REPAIR OF SPINES IN THE SEA URCHIN STRONGYLOCENTROTUS PURPURATUS (STIMPSON) , 1967 .

[117]  F. Wilt,et al.  The organic matrix of the skeletal spicule of sea urchin embryos , 1986, The Journal of cell biology.

[118]  Werner Sobek,et al.  Rosenstein Pavilion: Design and structural analysis of a functionally graded concrete shell , 2019, Structures.

[119]  P. Dubois,et al.  Structure, composition and mechanical relations to function in sea urchin spine. , 2010, Journal of structural biology.

[120]  D. Raup Theoretical morphology of echinoid growth , 1968, Journal of Paleontology.

[121]  K. N. Gonzales,et al.  Ageing and degradation determines failure mode on sea urchin spines. , 2017, Materials science & engineering. C, Materials for biological applications.

[122]  F. Meldrum,et al.  Porous gold structures through templating by echinoid skeletal plates , 2000 .

[123]  M. Jensen The Strongylocentrotidae (Echinoidea), a morphologic and systematic study , 1974 .

[124]  T. Motokawa Mechanical properties and structure of the spine‐joint central ligament of the sea urchin, Diadema setosum (Echinodermata, Echinoidea) , 2009 .

[125]  P. Dubois,et al.  Integumentary resorption and collagen synthesis during regression of headless pedicellariae in Sphaerechinus granularis (Echinodermata: Echinoidea) , 1995, Cell and Tissue Research.

[126]  D. Barnes,et al.  Smashing tests? Patterns and mechanisms of adult mortality in a declining echinoid population , 2005 .

[127]  I. Wilkie,et al.  variable tensility of the peristomial membrane of the sea-urchin Paracentrotus livid US (lamarck) , 1993 .

[128]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[129]  J. Aizenberg,et al.  Control of Macromolecule Distribution within Synthetic and Biogenic Single Calcite Crystals , 1997 .

[130]  Patrick Flammang,et al.  The Echinoderm Tube Foot and its Role in Temporary Underwater Adhesion , 2009 .

[131]  Valentina Perricone,et al.  Hybrid biomimetic design for sustainable development through multiple perspectives , 2019, GRID - Architecture, Planning and Design Journal.

[132]  S. Oldfield Surface ornamentation of the echinoid test and its ecologic significance , 1976, Paleobiology.

[133]  Thomas Speck,et al.  Developing the Experimental Basis for an Evaluation of Scaling Properties of Brittle and ‘Quasi-Brittle’ Biological Materials , 2016 .

[134]  F. Meldrum,et al.  Bioskeletons as Templates for Ordered, Macroporous Structures , 2000 .

[135]  P. Fratzl,et al.  The Crystallization of Amorphous Calcium Carbonate is Kinetically Governed by Ion Impurities and Water , 2018, Advanced science.

[136]  M. Telford Domes, arches and urchins: The skeletal architecture of echinoids (Echinodermata) , 1985, Zoomorphology.

[137]  Anomalies de structure des radioles de Heterocentrotus mammillatus (Echinodermata: Echinoidea) en microcosme in vitro , 1983 .

[138]  P. Flammang,et al.  Intra- and interspecific variation of attachment strength in sea urchins , 2007 .

[139]  J. Vincent,et al.  Biomimetics: its practice and theory , 2006, Journal of The Royal Society Interface.

[140]  David Speck,et al.  Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments , 2017, Bioinspiration & biomimetics.

[141]  M. Dickinson,et al.  CHARACTERIZATION OF E. CHLOROTICUS SEA URCHIN TOOTH USING NANOINDENTATION AND SEM , 2012 .

[142]  H. Nissen Crystal Orientation and Plate Structure in Echinoid Skeletal Units , 1969, Science.

[143]  C. Berthold,et al.  Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part II. Mechanical Behavior of Sea Urchin Spine Inspired Porous Aluminum Oxide Ceramics under Compression , 2009 .

[144]  Joanna Aizenberg,et al.  Interactions of various skeletal intracrystalline components with calcite crystals , 1993 .

[145]  A. Solovjev Symmetry, asymmetry, and dissymmetry in echinoids , 2014, Paleontological journal.

[146]  O. Ellers,et al.  Structural Strengthening of Urchin Skeletons by Collagenous Sutural Ligaments. , 1998, The Biological bulletin.

[147]  A. Smith Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids , 1981 .

[148]  S. Wainwright Form and Function in Organisms , 1988 .

[149]  J. Aizenberg,et al.  Mechanism of calcite co-orientation in the sea urchin tooth. , 2009, Journal of the American Chemical Society.

[150]  J. Nebelsick,et al.  Predation on Recent and Fossil Echinoids , 2003 .

[151]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[152]  R. R. Strathmann The role of spines in preventing structural damage to echinoid tests , 1981, Paleobiology.

[153]  Robert J. Wood,et al.  Echinoderm-Inspired Tube Feet for Robust Robot Locomotion and Adhesion , 2018, IEEE Robotics and Automation Letters.

[154]  Stuart R. Stock,et al.  Macro- and microstructural diversity of sea urchin teeth revealed by large-scale mircro-computed tomography survey , 2012, Optics & Photonics - Optical Engineering + Applications.

[155]  E. Rayfield Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil Organisms , 2007 .

[156]  S. Weiner,et al.  The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution , 2009, Proceedings of the National Academy of Sciences.

[157]  A. C. Campbell Form and Function of Pedicellariae , 2020 .

[158]  D. Raup CRYSTAL ORIENTATIONS IN THE ECHINOID APICAL SYSTEM , 1965 .

[159]  J. Lawrence Function of eponymous structures in echinoderms: a review , 2001 .

[160]  Louis G Zachos,et al.  A new computational growth model for sea urchin skeletons. , 2009, Journal of theoretical biology.

[161]  Petra Gruber,et al.  Biomimetics in Architecture , 2011 .

[162]  Neri Oxman,et al.  Structuring Materiality: Design Fabrication of Heterogeneous Materials , 2010 .

[163]  I. E. Gray,et al.  Studies on Factors Affecting the Local Distribution of Two Sea Urchins, Arbacia Punctulata and Lytechinus Variegatus , 1962 .

[164]  J. Lawrence The edible sea-urchins , 2001 .

[165]  A. C. Campbell,et al.  Morphology of the nervous and muscular systems in the heads of pedicellariae from the sea urchin Echinus esculentus L , 1987, Journal of morphology.

[166]  R. Emlet ECHINODERM CALCITE: A MECHANICAL ANALYSIS FROM LARVAL SPICULES , 1982 .

[167]  S. Stock,et al.  X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth. , 2002, Journal of structural biology.

[168]  Arthur Veis,et al.  Mineral‐related proteins of sea urchin teeth: Lytechinus variegatus , 2002, Microscopy research and technique.

[169]  A. Smith,et al.  Origins and biomechanical evolution of teeth in echinoids and their relatives , 2009 .

[170]  S. Stock,et al.  X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus. , 2003, Journal of structural biology.

[171]  Stanislav Gorb,et al.  Adhesion of echinoderm tube feet to rough surfaces , 2005, Journal of Experimental Biology.

[172]  Klaus M. Stiefel,et al.  Sea Urchins as an Inspiration for Robotic Designs , 2018, Journal of Marine Science and Engineering.

[173]  M. Daniela Candia Carnevali,et al.  Microstructure and mechanical design in the lantern ossicles of the regular sea-urchin Paracentrotus lividus : a scanning electron microscope study , 1991 .

[174]  Konrad Mrkel Morphologie der seeigelzhne@@@Morphology of Sea Urchin Teeth: IV. Die zhne von Laganum und Clypeaster (Echinodermata, Echinoidea)@@@IV. The teeth of Laganum and Clypeaster (Echinodermata, Echinoidea) , 1970 .

[175]  S. Weiner,et al.  Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. , 1990, Science.

[176]  M. Byrne,et al.  Risk and resilience: variations in magnesium in echinoid skeletal calcite , 2016 .

[177]  K. Towe Echinoderm Calcite: Single Crystal or Polycrystalline Aggregate , 1967, Science.

[178]  S. Weiner,et al.  Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth. , 1985, The Journal of experimental zoology.

[179]  C. Lauer,et al.  On the Relation of Amorphous Calcium Carbonate and the Macromechanical Properties of Sea Urchin Spines , 2020, Advanced Engineering Materials.

[180]  K. Nickel,et al.  Determination of the elastic modulus of highly porous samples by nanoindentation: a case study on sea urchin spines , 2010 .

[181]  D. Roy,et al.  Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange , 1974, Nature.

[182]  O. Ellers,et al.  Causes and Consequences of Fluctuating Coelomic Pressure in Sea Urchins. , 1992, The Biological bulletin.

[183]  P. Dubois,et al.  Temperature, salinity and growth rate dependences of Mg/Ca and Sr/Ca ratios of the skeleton of the sea urchin Paracentrotus lividus (Lamarck): an experimental approach , 2010 .

[184]  P. Trogu Giorgio Scarpa’s Model of a Sea Urchin Inspires New Instrumentation , 2016, Leonardo.

[185]  R. Portell,et al.  PREDATION-FACILITATED PRESERVATION OF ECHINOIDS IN A TROPICAL MARINE ENVIRONMENT , 2018, Palaios.

[186]  J. N. Weber The incorporation of magnesium into the skeletal calcites of echinoderms , 1969 .

[187]  J. Grossmann,et al.  Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines , 2013, Zoomorphology.

[188]  A. C. Campbell,et al.  Systematic significance of tridentate pedicellariae in the echinoid genera Diadema and Echinothrix , 2006 .

[189]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[190]  Francesco De Carlo,et al.  Self‐Sharpening Mechanism of the Sea Urchin Tooth , 2011 .

[191]  G. M. Philip Classification of echinoids , 1965 .

[192]  K. Märkel Experimental morphology of coronar growth in regular echinoids , 1981, Zoomorphology.

[193]  Sidney R. Cohen,et al.  Sea Urchin Tooth Design: An “All‐Calcite” Polycrystalline Reinforced Fiber Composite for Grinding Rocks , 2008 .

[194]  S. Stock Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties , 2014, Connective tissue research.

[195]  J. Pearse,et al.  Growth Zones in the Echinoid Skeleton , 1975 .

[196]  P. Fratzl,et al.  Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements , 2018 .

[197]  E. White,et al.  New Porous Biomaterials by Replication of Echinoderm Skeletal Microstructures , 1971, Nature.

[198]  Takuya Umedachi,et al.  Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[199]  E. Florey,et al.  Ultrastructure of sea urchin tube feet , 1977, Cell and Tissue Research.

[200]  David S Strait,et al.  Finite element analysis in functional morphology. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[201]  N. Toader,et al.  Energy absorption in functionally graded concrete bioinspired by sea urchin spines , 2017 .

[202]  S. Weiner,et al.  Mineral Deposition and Crystal Growth in the Continuously Forming Teeth of Sea Urchins , 2007 .

[203]  R. Birenheide,et al.  To be Stiff or to be Soft-the Dilemma of the Echinoid Tooth Ligament. II. Mechanical Properties. , 1996, The Biological bulletin.

[204]  F. Bonasoro,et al.  The compass depressors ofParacentrotus lividus (Echinodermata, Echinoida): ultrastructural and mechanical aspects of their variable tensility and contractility , 1992, Zoomorphology.

[205]  P. Flammang,et al.  Estimation of the attachment strength of the shingle sea urchin, Colobocentrotus atratus, and comparison with three sympatric echinoids , 2008 .

[206]  I. Wilkie,et al.  Microarchitecture and mechanics of the sea‐urchin peristomial membrane , 1994 .

[207]  K. Vecchio,et al.  Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants. , 2007, Acta biomaterialia.

[208]  S. Weiner,et al.  Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[209]  S. Stock,et al.  Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy. , 2006, Journal of structural biology.

[210]  Patrick Flammang,et al.  Morphology and tenacity of the tube foot disc of three common European sea urchin species: a comparative study , 2006, Biofouling.

[211]  E. Kniprath Ultrastructure and growth of the sea urchin tooth , 1974, Calcified Tissue Research.

[212]  P. Dubois,et al.  Regeneration of spines and pedicellariae in echinoderms: A review , 2001, Microscopy research and technique.

[213]  C. Paul Chapter 5 Evolution of Primitive Echinoderms , 1977 .

[214]  M. D. Candia Carnevali,et al.  Mechanical properties of sea-urchin lantern muscles: a comparative investigation of intact muscle groups in Paracentrotus lividus (Lam.) and Stylocidaris affinis (Phil.) (Echinodermata, Echinoidea) , 1998, Journal of Comparative Physiology B.

[215]  P. Dubois,et al.  Relative influences of solution composition and presence of intracrystalline proteins on magnesium incorporation in calcium carbonate minerals: Insight into vital effects , 2011 .

[216]  B. Ruthensteiner,et al.  Tailored order: the mesocrystalline nature of sea urchin teeth. , 2014, Acta biomaterialia.

[217]  J. Aizenberg,et al.  Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[218]  Daniel Sonntag,et al.  The Skeleton of the Sand Dollar as a Biological Role Model for Segmented Shells in Building Construction: A Research Review , 2016 .

[219]  Ille C. Gebeshuber,et al.  An attempt to reveal synergies between biology and mechanical engineering , 2008 .

[220]  F. Wilt,et al.  Molecular aspects of biomineralization of the echinoderm endoskeleton. , 2008, Progress in molecular and subcellular biology.

[221]  B. Guéorguiev,et al.  RESEARCH ARTICLE , 2015 .

[222]  T. Stach,et al.  Evolution of a Novel Muscle Design in Sea Urchins (Echinodermata: Echinoidea) , 2012, PloS one.

[223]  Zhibing Zhang,et al.  Profiting from nature: macroporous copper with superior mechanical properties. , 2007, Chemical communications.