Robust multivariable PI-controller for infinite dimensional systems

A robust multivariable controller is introduced for a class of distributed parameter systems. The system to be controlled is given as \dot{x} = Ax + Bu, y = Cx in a Banach space. The purpose of the control, which is based on the measurement y , is to stabilize and regulate the system so that y(t) \rightarrow y_{r}, as t \rightarrow \infty , where y r is a constant reference vector. Under the assumptions that operator A generates a holomorphic stable semigroup, B is linear and bounded, C is linear and A -bounded, and the input and output spaces are of the same dimension; a necessary and sufficient condition is found for the existence of a robust multivariable controller. This controller appears to be a multivariable PI-controller. Also, a simple necessary criterion for the existence of a decentralized controller is derived. The tuning of the controller is discussed and it is shown that the I-part of the controller can be tuned on the basis of step responses, without exact knowledge of the system's parameters. The presented theory is then used as an example to control the temperature profile of a bar, with the Dirichlet boundary conditions.

[1]  H. Fattorini Boundary Control Systems , 1968 .

[2]  E. Davison The output control of linear time-invariant multivariable systems with unmeasurable arbitrary disturbances , 1972 .

[3]  M. B Ajinkya,et al.  The experimental implementation of a distributed parameter filter , 1975, Autom..

[4]  M. Athans,et al.  Toward a practical theory for distributed parameter systems , 1970, IEEE Transactions on Automatic Control.

[5]  S. Pohjolainen Computation of transmission zeros for distributed parameter systems , 1981 .

[6]  Alan S. Foss,et al.  Critique of chemical process control theory , 1973 .

[7]  Edward J. Davison Multivariable tuning regulators: The feedforward and robust control of a general servomechanism problem , 1975 .

[8]  E. Davison,et al.  Robust control of a general servomechanism problem: The servo compensator , 1975, Autom..

[9]  N. Levan The stabilizability problem: A Hilbert space operator decomposition approach , 1978 .

[10]  M. Balas MODAL CONTROL OF CERTAIN FLEXIBLE DYNAMIC SYSTEMS , 1978 .

[11]  E. Davison The robust control of a servomechanism problem for linear time-invariant multivariable systems , 1976 .

[12]  M. Amouroux,et al.  On the optimal pointwise control and parametric optimization of distributed parameter systems , 1978 .

[13]  R. Gressang,et al.  Observers for systems characterized by semigroups , 1975 .

[14]  Edward J. Davison The robust decentralized control of a general servomechanism problem , 1975 .

[15]  Heikki N. Koivo,et al.  Multivariable tuning regulators for unknown systems , 1980, Autom..

[16]  A. V. Balakrishnan Identification of distributed parameter systems: Non-computational aspects , 1978 .

[17]  H. Koivo,et al.  An observer theory for time delay systems , 1976 .

[18]  W. Harmon Ray,et al.  Real time distributed parameter state estimation applied to a two dimensional heated ingot , 1978, Autom..

[19]  Yoshiyuki Sakawa,et al.  Feedback stabilization of a class of distributed systems and construction of a state estimator , 1975 .

[20]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[21]  R. Triggiani On the stabilizability problem in Banach space , 1975 .

[22]  Edward J. Davison,et al.  A generalization of the output control of linear multivariable systems with unmeasurable arbitrary disturbances , 1975 .