In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery.

[1]  S. Sakai,et al.  Control of cellular adhesiveness in an alginate-based hydrogel by varying peroxidase and H(2)O(2) concentrations during gelation. , 2010, Acta biomaterialia.

[2]  D. S. Lee,et al.  Bioadhesive PAA-PEG-PAA triblock copolymer hydrogels for drug delivery in oral cavity , 2010 .

[3]  Tae Gwan Park,et al.  Enzyme-mediated cross-linking of Pluronic copolymer micelles for injectable and in situ forming hydrogels. , 2011, Acta biomaterialia.

[4]  Shasha Liu,et al.  Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer. , 2012, Acta biomaterialia.

[5]  A. Gutowska,et al.  Injectable and thermogelling hydrogels of PCL-g-PEG: mechanisms, rheological and enzymatic degradation properties. , 2013, Journal of materials chemistry. B.

[6]  Anna Gutowska,et al.  Biodegradable thermoreversible gelling PLGA-g-PEG copolymers , 2001 .

[7]  Gang Guo,et al.  In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) copolymer , 2009, BMC biotechnology.

[8]  Ick Chan Kwon,et al.  Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer. , 2006, Biomaterials.

[9]  A. Khademhosseini,et al.  Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology , 2006 .

[10]  Christopher D. Pritchard,et al.  An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. , 2011, Biomaterials.

[11]  P. Gupta,et al.  Hydrogels: from controlled release to pH-responsive drug delivery. , 2002, Drug discovery today.

[12]  D. S. Lee,et al.  Injectable biodegradable hydrogels. , 2010, Macromolecular bioscience.

[13]  Etienne Schacht,et al.  Polyacetal and poly(ortho ester)-poly(ethylene glycol) graft copolymer thermogels: preparation, hydrolysis and FITC-BSA release studies. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[14]  D. S. Lee,et al.  pH-sensitive and bioadhesive poly(β-amino ester)-poly(ethylene glycol)-poly(β-amino ester) triblock copolymer hydrogels with potential for drug delivery in oral mucosal surfaces , 2009 .

[15]  Allan S Hoffman,et al.  Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. , 2013, Advanced drug delivery reviews.

[16]  Young Ha Kim,et al.  The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects. , 2011, Biomaterials.

[17]  Ki Dong Park,et al.  In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. , 2011, Biomacromolecules.

[18]  Tae Gwan Park,et al.  Synthesis and characterization of pH/temperature-sensitive block copolymers via atom transfer radical polymerization , 2007 .

[19]  Wim E Hennink,et al.  Hydrogels for protein delivery. , 2012, Chemical reviews.

[20]  Dong-An Wang,et al.  Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. , 2010, Advanced drug delivery reviews.

[21]  Q. Fang,et al.  New Biodegradable Amphiphilic Block Copolymers of ε‐Caprolactone and δ‐Valerolactone Catalyzed by Novel Aluminum Metal Complexes , 2005 .

[22]  Jeffrey A. Hubbell,et al.  Hydrogel systems for barriers and local drug delivery in the control of wound healing , 1996 .

[23]  D. S. Lee,et al.  Controlled release of human growth hormone from a biodegradable pH/temperature-sensitive hydrogel system , 2011 .

[24]  A. Hoffman,et al.  Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[25]  D. Adams,et al.  Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. , 2013, Biomacromolecules.

[26]  Jan C. M. van Hest,et al.  Peptide- and Protein-Based Hydrogels , 2012 .

[27]  J. Hilborn,et al.  Smart Design of Stable Extracellular Matrix Mimetic Hydrogel: Synthesis, Characterization, and In Vitro and In Vivo Evaluation for Tissue Engineering , 2013 .

[28]  Jun Li,et al.  Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). , 2007, Biomaterials.

[29]  D. S. Lee,et al.  Novel pH and temperature-sensitive block copolymers: Poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(β-amino ester) , 2006 .

[30]  K. Marra,et al.  Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. , 2009, Biomaterials.

[31]  Sung Wan Kim,et al.  Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions , 1999 .

[32]  Jun Li,et al.  Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. , 2005, Biomacromolecules.

[33]  D. Pochan,et al.  Rheological properties of peptide-based hydrogels for biomedical and other applications. , 2010, Chemical Society reviews.

[34]  D. Attwood,et al.  Ultrasonic velocity and light-scattering studies on the polyoxyethylene—polyoxypropylene copolymer Pluronic F127 in aqueous solution , 1982 .

[35]  D. S. Lee,et al.  Sustained delivery of doxorubicin using biodegradable pH/temperature-sensitive poly(ethylene glycol)-poly(β-amino ester urethane) multiblock copolymer hydrogels , 2011 .

[36]  W. Brown,et al.  Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solution. The influence of relative block size , 1993 .

[37]  Sung Wan Kim,et al.  Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. , 2006, Biomacromolecules.

[38]  Doo Sung Lee,et al.  pH/temperature sensitive poly(ethylene glycol)-based biodegradable polyester block copolymer hydrogels , 2006 .

[39]  I. Noh,et al.  Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. , 2007, Journal of biomedical materials research. Part A.

[40]  Chong-Su Cho,et al.  Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[41]  H. Allcock,et al.  Injectable and Biodegradable Supramolecular Hydrogels by Inclusion Complexation between Poly(organophosphazenes) and α-Cyclodextrin , 2013 .

[42]  D. S. Lee,et al.  Biodegradable oligo(amidoamine/β-amino ester) hydrogels for controlled insulin delivery , 2011 .

[43]  Soo-Chang Song,et al.  A thermo-sensitive poly(organophosphazene) hydrogel used as an extracellular matrix for artificial pancreas , 2005, Journal of biomaterials science. Polymer edition.

[44]  Y. Bae,et al.  Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[45]  Kell Mortensen,et al.  Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution , 1993 .

[46]  Young Moo Lee,et al.  A Thermosensitive Poly(organophosphazene) Gel , 2002 .

[47]  D. Teng,et al.  Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition , 2010 .

[48]  Mikaël M. Martino,et al.  Engineering the Regenerative Microenvironment with Biomaterials , 2013, Advanced healthcare materials.

[49]  D. S. Lee,et al.  Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) hydrogels for controlled release of doxorubicin. , 2011, Acta biomaterialia.

[50]  Woo-Kul Lee,et al.  Gelation Behavior of Poly(ethylene glycol) and Polycaprolactone Triblock and Multiblock Copolymer Aqueous Solutions , 2006 .

[51]  Junfeng Zhang,et al.  A pH/enzyme-responsive tumor-specific delivery system for doxorubicin. , 2010, Biomaterials.

[52]  Leaf Huang,et al.  Thermosensitive Hydrogel as a Tgf-β1 Gene Delivery Vehicle Enhances Diabetic Wound Healing , 2003, Pharmaceutical Research.

[53]  J. Schneider,et al.  Self-assembling materials for therapeutic delivery. , 2009, Acta biomaterialia.

[54]  D. S. Lee,et al.  Dielectric behavior during sol-gel transition of PEO-PPO-PEO triblock copolymer aqueous solution , 2000 .

[55]  Dong Kuk Park,et al.  Injectable poly(amidoamine)-poly(ethylene glycol)-poly(amidoamine) triblock copolymer hydrogel with dual sensitivities: pH and temperature. , 2009, Biomacromolecules.

[56]  Weiliam Chen,et al.  Delivery of rosiglitazone from an injectable triple interpenetrating network hydrogel composed of naturally derived materials. , 2011, Biomaterials.

[57]  Ick Chan Kwon,et al.  pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. , 2007, International journal of pharmaceutics.

[58]  Jinghua Hao,et al.  Chondrogenesis of synovium-derived mesenchymal stem cells in gene-transferred co-culture system. , 2010, Biomaterials.

[59]  Jae Sun Yoo,et al.  Novel injectable pH and temperature sensitive block copolymer hydrogel. , 2005, Biomacromolecules.

[60]  Y. Zhao,et al.  Synthesis, self-assembly and characterization of a new glucoside-type hydrogel having a Schiff base on the aglycon. , 2004, Carbohydrate research.

[61]  João Rodrigues,et al.  Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. , 2012, Chemical Society reviews.

[62]  C A van Blitterswijk,et al.  Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. , 2010, Acta biomaterialia.

[63]  Chaoliang He,et al.  In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[64]  D. S. Lee,et al.  Biodegradable star-shaped poly(ethylene glycol)-poly(β-amino ester) cationic pH/temperature-sensitive copolymer hydrogels , 2011 .

[65]  Kinam Park,et al.  In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. , 2007, Biomacromolecules.

[66]  J. Feijen,et al.  Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[67]  D. Attwood,et al.  The micellar properties of the poly(oxyethylene)-poly(oxypropylene) copolymer Pluronic F127 in water and electrolyte solution , 1985 .

[68]  S. Bhang,et al.  Injectable hyaluronic acid-tyramine hydrogels for the treatment of rheumatoid arthritis. , 2011, Acta biomaterialia.

[69]  H. Deschout,et al.  Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[70]  Lin Yu,et al.  Injectable hydrogels as unique biomedical materials. , 2008, Chemical Society reviews.

[71]  Y. Sohn,et al.  Secondary Structure Effect of Polypeptide on Reverse Thermal Gelation and Degradation of l/dl-Poly(alanine)–Poloxamer–l/dl-Poly(alanine) Copolymers , 2008 .

[72]  Sung Wan Kim,et al.  Caprolactonic poloxamer analog: PEG-PCL-PEG. , 2005, Biomacromolecules.

[73]  X. Qu,et al.  Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. , 2010, Biomacromolecules.

[74]  Chaoliang He,et al.  In situ gelling aqueous solutions of pH-and temperature-sensitive poly(ester amino urethane)s , 2008 .

[75]  Kyung Min Park,et al.  Supramolecular hydrogels exhibiting fast in situ gel forming and adjustable degradation properties. , 2010, Biomacromolecules.

[76]  M. Kurisawa,et al.  An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[77]  Gordon L. Amidon,et al.  Thermodynamic studies on the gel-sol transition of some pluronic polyols , 1984 .

[78]  S. Park,et al.  Block sequence affects thermosensitivity and nano-assembly: PEG-L-PA-DL-PA and PEG-DL-PA-L-PA block copolymers , 2011 .

[79]  Young Jin Kim,et al.  Controlled Release of Insulin from Injectable Biodegradable Triblock Copolymer , 2001, Pharmaceutical Research.

[80]  Yuquan Wei,et al.  Polymeric matrix for drug delivery: honokiol-loaded PCL-PEG-PCL nanoparticles in PEG-PCL-PEG thermosensitive hydrogel. , 2009, Journal of biomedical materials research. Part A.

[81]  D. S. Lee,et al.  Functionalized injectable hydrogels for controlled insulin delivery. , 2008, Biomaterials.

[82]  D. S. Lee,et al.  Dually cationic and anionic pH/temperature-sensitive injectable hydrogels and potential application as a protein carrier. , 2012, Chemical communications.

[83]  Samuel I Stupp,et al.  Self-assembling peptide scaffolds for regenerative medicine. , 2012, Chemical communications.

[84]  Karun S. Arora,et al.  A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. , 2010, Biomaterials.

[85]  Yung-Chih Wu,et al.  A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[86]  H. Lee,et al.  Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[87]  E. Kang,et al.  Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering. , 2009, Tissue engineering. Part A.

[88]  Kinam Park,et al.  Environment-sensitive hydrogels for drug delivery , 2001 .

[89]  Sung Wan Kim,et al.  Biodegradable block copolymers as injectable drug-delivery systems , 1997, Nature.

[90]  Bing Kan,et al.  Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. , 2009, International journal of pharmaceutics.

[91]  G. Schmidt,et al.  Thermosensitive and dissolution properties in nanocomposite polymer hydrogels. , 2009, Macromolecular rapid communications.

[92]  D. S. Lee,et al.  Controlling the degradation of pH/temperature-sensitive injectable hydrogels based on poly(β-amino ester) , 2010 .

[93]  Hoon Hyun,et al.  Preparation of Thermosensitive Diblock Copolymers Consisting of MPEG and Polyesters , 2006 .

[94]  C. Reinhart-King,et al.  Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels. , 2010, Acta biomaterialia.

[95]  pH- and temperature-sensitive PCL-grafted poly(β-amino ester)-poly(ethylene glycol)-poly(β-amino ester) copolymer hydrogels , 2010 .

[96]  D. S. Lee,et al.  Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[97]  D. Han,et al.  Synthesis and Characterization of Star-Shaped PLLA-PEO Block Copolymers with Temperature-Sensitive Sol-Gel Transition Behavior , 2001 .

[98]  Y. Sohn,et al.  Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers , 2008 .

[99]  J. Mestecky,et al.  Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[100]  Doo Sung Lee,et al.  Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications , 2011 .

[101]  Krista L. Niece,et al.  Modification of gelation kinetics in bioactive peptide amphiphiles. , 2008, Biomaterials.

[102]  Lin Yu,et al.  Roles of Hydrophilic Homopolymers on the Hydrophobic-Association-Induced Physical Gelling of Amphiphilic Block Copolymers in Water , 2008 .

[103]  Yuquan Wei,et al.  Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. , 2009, Acta biomaterialia.

[104]  S. Cho,et al.  Controlled release of bovine serum albumin using MPEG–PCL diblock copolymers as implantable protein carriers , 2006 .

[105]  Karin Schillén,et al.  Triblock Copolymers in Aqueous Solution Studied by Static and Dynamic Light Scattering and Oscillatory Shear Measurements. The Influence of Relative Block Sizes , 1992 .

[106]  S. W. Kim,et al.  pH/temperature-sensitive 4-arm poly(ethylene glycol)-poly(amino urethane) copolymer hydrogels , 2010 .

[107]  Chaoliang He,et al.  Versatile biofunctionalization of polypeptide-based thermosensitive hydrogels via click chemistry. , 2013, Biomacromolecules.

[108]  G. Kang,et al.  Effect of chitosan on the release of protein from thermosensitive poly(organophosphazene) hydrogels. , 2008, International journal of pharmaceutics.

[109]  D. Mooney,et al.  Hydrogels for tissue engineering. , 2001, Chemical Reviews.

[110]  Y. Bae,et al.  Thermogelling Poly(caprolactone-b-ethylene glycol-b-caprolactone) Aqueous Solutions , 2005 .

[111]  C. Tsvetanov,et al.  Synthesis of Polyglycidol-Based Analogues to Pluronic L121-F127 Copolymers. Self-Assembly, Thermodynamics, Turbidimetric, and Rheological Studies , 2008 .

[112]  A. Jayakrishnan,et al.  Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. , 2005, Biomaterials.

[113]  D. S. Lee,et al.  Molecular design of novel pH/temperature-sensitive hydrogels , 2009 .

[114]  D. Bikiaris,et al.  Synthesis of cross-linked N-(2-carboxybenzyl)chitosan pH sensitive polyelectrolyte and its use for drug controlled delivery , 2010 .

[115]  J. Kopeček Hydrogel biomaterials: a smart future? , 2007, Biomaterials.

[116]  Anna Gutowska,et al.  Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA , 2000 .

[117]  S. Cho,et al.  Preparation of methoxy poly(ethylene glycol)/polyester diblock copolymers and examination of the gel‐to‐sol transition , 2004 .

[118]  Anna Gutowska,et al.  Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. , 2002, Biomacromolecules.

[119]  Dong Kuk Park,et al.  pH- and temperature-sensitive multiblock copolymer hydrogels composed of poly(ethylene glycol) and poly(amino urethane) , 2008 .

[120]  William E. Bentley,et al.  Diffusion of interleukin-2 from cells overlaid with cytocompatible enzyme-crosslinked gelatin hydrogels. , 2010, Journal of biomedical materials research. Part A.

[121]  B. Lee,et al.  Synthesis and characterization of biodegradable Thermosensitive poly(organophosphazene) gels , 2004 .

[122]  D. S. Lee,et al.  Synthesis and characterization of poly(amino urea urethane)-based block copolymer and its potential application as injectable pH/temperature-sensitive hydrogel for protein carrier , 2012 .

[123]  Wesley R. Legant,et al.  Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels , 2013, Nature materials.

[124]  Christine E Schmidt,et al.  Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. , 2005, Biomaterials.

[125]  D. S. Lee,et al.  Oligo(amidoamine)s hydrogels with tunable gel properties. , 2010, Chemical communications.

[126]  J. Leroux,et al.  In situ-forming hydrogels--review of temperature-sensitive systems. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[127]  Y. Bae,et al.  In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. , 2000, Journal of biomedical materials research.

[128]  B. Jeong,et al.  3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel. , 2013, Biomacromolecules.