Archaea: An Agro-Ecological Perspective

[1]  M. Medema,et al.  Pan-genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super-order , 2020, Scientific Reports.

[2]  Qian Li,et al.  Insight Into Interactions of Thermoacidophilic Archaea With Elemental Sulfur: Biofilm Dynamics and EPS Analysis , 2019, Front. Microbiol..

[3]  Ajar Nath Yadav,et al.  Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch , 2019, Biologia.

[4]  Yahai Lu,et al.  Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems , 2019, Microbiome.

[5]  G. Berg,et al.  What Is the Role of Archaea in Plants? New Insights from the Vegetation of Alpine Bogs , 2018, mSphere.

[6]  J. Chanton,et al.  Methanogens Are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades , 2018, Applied and Environmental Microbiology.

[7]  Hans Oechsner,et al.  Biological hydrogen methanation - A review. , 2017, Bioresource technology.

[8]  Ajar Nath Yadav Plant Microbiomes and Its Beneficial Multifunctional Plant Growth Promoting Attributes , 2017, International Journal of Environmental Sciences & Natural Resources.

[9]  Philipp C. Münch,et al.  Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms , 2017, Scientific Reports.

[10]  S. Albers,et al.  Mechanisms of gene flow in archaea , 2017, Nature Reviews Microbiology.

[11]  S. Mamet,et al.  Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion , 2017, The ISME Journal.

[12]  B. Henrissat,et al.  Archaea: Essential inhabitants of the human digestive microbiota , 2017 .

[13]  M. Adams,et al.  Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms , 2017, Wiley interdisciplinary reviews. Systems biology and medicine.

[14]  Israel M. Scott,et al.  Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective , 2016 .

[15]  Christopher A. Voigt,et al.  Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes , 2016, Applied and Environmental Microbiology.

[16]  C. Cerri,et al.  Specific microbial gene abundances and soil parameters contribute to C, N, and greenhouse gas process rates after land use change in Southern Amazonian Soils , 2015, Front. Microbiol..

[17]  Anil Kumar,et al.  Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants , 2015, Front. Microbiol..

[18]  Ajar Nath Yadav,et al.  Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle , 2015, Scientific Reports.

[19]  R. Chaudhary,et al.  Methane uptake in tropical soybean–wheat agroecosystem under different fertilizer regimes , 2015, Environmental Earth Sciences.

[20]  Anna K. Auerbach,et al.  Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees , 2015, Front. Microbiol..

[21]  Purificación López-García,et al.  Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota , 2014, Genome biology and evolution.

[22]  N. Boon,et al.  Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways , 2013, The ISME Journal.

[23]  V. Müller,et al.  Adaptations of anaerobic archaea to life under extreme energy limitation. , 2014, FEMS microbiology reviews.

[24]  Samir Radwan,et al.  Enhanced bioremediation of oil-polluted, hypersaline, coastal areas in Kuwait via vitamin-fertilization , 2014, Environmental Science and Pollution Research.

[25]  Seema B. Sharma,et al.  Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils , 2013, SpringerPlus.

[26]  B. Bohannan,et al.  Response of Free-Living Nitrogen-Fixing Microorganisms to Land Use Change in the Amazon Rainforest , 2013, Applied and Environmental Microbiology.

[27]  Shihu Hu,et al.  Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage , 2013, Nature.

[28]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[29]  J. W. Peters,et al.  New insights into the evolutionary history of biological nitrogen fixation , 2013, Front. Microbiol..

[30]  Mahdi Kadivar,et al.  Effect of dietary flaxseed oil level on the growth performance and fatty acid composition of fingerlings of rainbow trout, Oncorhynchus mykiss , 2013, SpringerPlus.

[31]  Ji‐Zheng He,et al.  A review of ammonia-oxidizing bacteria and archaea in Chinese soils , 2012, Front. Microbio..

[32]  D. Al-Mailem,et al.  Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination , 2012, Extremophiles.

[33]  A. Rosado,et al.  Mini-Review: Probing the limits of extremophilic life in extraterrestrial environment-simulated experiments , 2012, International Journal of Astrobiology.

[34]  E. Triplett,et al.  Drivers of archaeal ammonia-oxidizing communities in soil , 2012, Front. Microbio..

[35]  J. H. Kim,et al.  Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor , 2012 .

[36]  A. Oren,et al.  Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. , 2012, FEMS microbiology letters.

[37]  T. Johansson,et al.  Archaeal abundance in relation to root and fungal exudation rates. , 2012, FEMS microbiology ecology.

[38]  Natalia N. Ivanova,et al.  Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes , 2011, PloS one.

[39]  R. Simpson,et al.  Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus , 2011, Plant Physiology.

[40]  B. Venkateswarlu,et al.  Role of microorganisms in adaptation of agriculture crops to abiotic stresses , 2011 .

[41]  M. Hattori,et al.  Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group , 2010, Nucleic acids research.

[42]  R. Simpson,et al.  Soil Microorganisms Mediating Phosphorus Availability , 2011 .

[43]  Almas Zaidi,et al.  Role of phosphate-solubilizing microorganisms in sustainable agriculture — A review , 2011, Agronomy for Sustainable Development.

[44]  M. Farooq,et al.  Plant drought stress: effects, mechanisms and management , 2011, Agronomy for Sustainable Development.

[45]  J. Prosser,et al.  Archaea rather than bacteria control nitrification in two agricultural acidic soils. , 2010, FEMS microbiology ecology.

[46]  S. Hasnain,et al.  Comparative study of wild and transformed salt tolerant bacterial strains on Triticum aestivum growth under salt stress , 2010, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[47]  T. Ferdelman,et al.  Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany) , 2010 .

[48]  E. Bini Archaeal transformation of metals in the environment. , 2010, FEMS microbiology ecology.

[49]  J. Oost,et al.  Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal , 2010, Environmental technology.

[50]  S. Radwan,et al.  Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf , 2010, Extremophiles.

[51]  V. Grossi,et al.  Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France) , 2010, Extremophiles.

[52]  F. Asch,et al.  Plant-rhizobacteria interactions alleviate abiotic stress conditions. , 2009, Plant, cell & environment.

[53]  S. Suh,et al.  ATP-dependent DNA ligase from Archaeoglobus fulgidus displays a tightly closed conformation. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[54]  G. Griffith,et al.  Factors affecting rumen methanogens and methane mitigation strategies , 2009 .

[55]  D. Balachandar,et al.  Characterization of 1-aminocyclopropane-1-carboxylate deaminase producing methylobacteria from phyllosphere of rice and their role in ethylene regulation , 2009 .

[56]  E. Koonin,et al.  Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world , 2008, Nucleic acids research.

[57]  Yong-guan Zhu,et al.  Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? , 2008, Environmental microbiology.

[58]  Christian A. Ross,et al.  Global Occurrence of Archaeal amoA Genes in Terrestrial Hot Springs , 2008, Applied and Environmental Microbiology.

[59]  E. Koonin,et al.  A korarchaeal genome reveals insights into the evolution of the Archaea , 2008, Proceedings of the National Academy of Sciences.

[60]  Shiyun Chen,et al.  Enhancement of heavy metal accumulation by tissue specific co-expression of iaaM and ACC deaminase genes in plants. , 2008, Chemosphere.

[61]  P. Forterre,et al.  Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota , 2008, Nature Reviews Microbiology.

[62]  P. Blum,et al.  The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon Metallosphaera sedula Provides Insights into Bioleaching-Associated Metabolism , 2007, Applied and Environmental Microbiology.

[63]  M. Arshad,et al.  Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture , 2007, Journal of Industrial Microbiology & Biotechnology.

[64]  Jos Vanderleyden,et al.  Indole-3-acetic acid in microbial and microorganism-plant signaling. , 2007, FEMS microbiology reviews.

[65]  P. Norris,et al.  Ferrous Iron- and Sulfur-Induced Genes in Sulfolobus metallicus , 2007, Applied and Environmental Microbiology.

[66]  W. Reeburgh Oceanic methane biogeochemistry. , 2007, Chemical reviews.

[67]  M. Daly,et al.  Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. , 2006, Microbiology.

[68]  P. Franzmann,et al.  Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap , 2006, Extremophiles.

[69]  B. Dave,et al.  Siderophores of halophilic archaea and their chemical characterization. , 2006, Indian journal of experimental biology.

[70]  M. Arshad,et al.  Effect of plant growth promoting rhizobacteria containing ACC‐deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.) , 2006, Letters in applied microbiology.

[71]  T. Yuwono,et al.  The role of osmotolerant rhizobacteria in rice growth under different drought conditions , 2005 .

[72]  I. Tanaka,et al.  Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii. , 2004, Journal of molecular biology.

[73]  N. V. Pavlova,et al.  Recent developments in the optimization of thermostable DNA polymerases for efficient applications. , 2004, Trends in biotechnology.

[74]  Bernard R. Glick,et al.  PLANT GROWTH-PROMOTING BACTERIA THAT CONFER RESISTANCE TO WATER STRESS IN TOMATOES AND PEPPERS , 2004 .

[75]  Dieter Söll,et al.  The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  E. Koonin,et al.  Comparative genomics of archaea: how much have we learned in six years, and what's next? , 2003, Genome Biology.

[77]  A. Oren Molecular ecology of extremely halophilic Archaea and Bacteria. , 2002, FEMS microbiology ecology.

[78]  U. Deppenmeier The unique biochemistry of methanogenesis. , 2002, Progress in nucleic acid research and molecular biology.

[79]  Everett L. Shock,et al.  Energetics of Overall Metabolic Reactions of Thermophilic and Hyperthermophilic Archaea and Bacteria , 2001 .

[80]  Kelly P. Nevin,et al.  Reductive Precipitation of Gold by Dissimilatory Fe(III)-Reducing Bacteria andArchaea , 2001, Applied and Environmental Microbiology.

[81]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[82]  A. Reysenbach,et al.  Thermophiles Biodiversity, Ecology, and Evolution , 2001, Springer US.

[83]  J. Leigh,et al.  Nitrogen fixation in methanogens: the archaeal perspective. , 2000, Current issues in molecular biology.

[84]  D. Lovley,et al.  Reduction of Fe(III), Mn(IV), and Toxic Metals at 100°C by Pyrobaculum islandicum , 2000, Applied and Environmental Microbiology.

[85]  John L. Howland,et al.  The Surprising Archaea: Discovering Another Domain of Life , 2000 .

[86]  Peter G. Brewer,et al.  Methane-consuming archaebacteria in marine sediments , 1999, Nature.

[87]  C. Schleper,et al.  Recovery of crenarchaeotal ribosomal DNA sequences from freshwater-lake sediments , 1997, Applied and environmental microbiology.

[88]  M. Adams,et al.  Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms. , 1994, FEMS microbiology reviews.

[89]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[90]  G. Mille,et al.  Biodegradation of hydrocarbons by an extremely halophilic archaebacterium , 1990 .

[91]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[92]  R. White Indole-3-acetic acid and 2-(indol-3-ylmethyl)indol-3-yl acetic acid in the thermophilic archaebacterium Sulfolobus acidocaldarius , 1987, Journal of bacteriology.

[93]  L. Daniels,et al.  Dinitrogen fixation by a thermophilic methanogenic bacterium , 1984, Nature.

[94]  P. A. Murray,et al.  Nitrogen fixation by a methanogenic archaebacterium , 1984, Nature.

[95]  C R Woese,et al.  The phylogeny of prokaryotes. , 1980, Microbiological sciences.