Frequency analysis for multi-dimensional systems: global dynamics and diffusion
暂无分享,去创建一个
[1] Jacques Laskar,et al. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .
[2] A. Lichtenberg,et al. Regular and Stochastic Motion , 1982 .
[3] C. Froeschlé. On the number of isolating integrals in systems with three degrees of freedom , 1971 .
[4] J. Pöschel. Integrability of hamiltonian systems on cantor sets , 1982 .
[5] Jacques Laskar,et al. The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping , 1992 .
[6] Vladimir Igorevich Arnolʹd,et al. Problèmes ergodiques de la mécanique classique , 1967 .
[7] Wood,et al. Arnold diffusion in weakly coupled standard maps. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[8] Dumas,et al. Global dynamics and long-time stability in Hamiltonian systems via numerical frequency analysis. , 1993, Physical review letters.
[9] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[10] J. Laskar. Secular evolution of the solar system over 10 million years , 1988 .
[11] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[12] C. Froeschlé,et al. Numerical Study of a Four-Dimensional Mapping. II. , 1973 .
[13] C. Froeschlé,et al. Numerical study of a four-dimensional mapping , 1973 .
[14] M. R. Herman. Inégalités « a priori » pour des tores lagrangiens invariants par des difféomorphismes symplectiques , 1989 .
[15] M. R. Herman,et al. Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .
[16] R. Ruth,et al. Long-term bounds on nonlinear Hamiltonian motion , 1992 .