Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model

Strong electron correlations lie at the origin of high-temperature superconductivity. Its essence is believed to be captured by the Fermi-Hubbard model of repulsively interacting fermions on a lattice. Here we report on the site-resolved observation of charge and spin correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold atoms. Antiferromagnetic spin correlations are maximal at half-filling and weaken monotonically upon doping. At large doping, nearest-neighbor correlations between singly charged sites are negative, revealing the formation of a correlation hole, the suppressed probability of finding two fermions near each other. As the doping is reduced, the correlations become positive, signaling strong bunching of doublons and holes, in agreement with numerical calculations. The dynamics of the doublon-hole correlations should play an important role for transport in the Fermi-Hubbard model.

[1]  R. Gommers,et al.  Suppression of density fluctuations in a quantum degenerate Fermi gas. , 2010, Physical review letters.

[2]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[3]  I. Bloch,et al.  Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice , 2006, Nature.

[4]  M. Greiner,et al.  Site-resolved imaging of fermionic ^{6}Li in an optical lattice. , 2015, Physical review letters.

[5]  Allan D. Boardman,et al.  Modern Problems in Condensed Matter Sciences , 1991 .

[6]  Marcos Rigol,et al.  A short introduction to numerical linked-cluster expansions , 2012, Comput. Phys. Commun..

[7]  I. Bloch,et al.  Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains , 2016, Science.

[8]  C. Umrigar,et al.  Quantum Monte Carlo methods in physics and chemistry , 1999 .

[9]  Sebastian Will,et al.  Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice , 2008, Science.

[10]  F. Brennecke,et al.  Equation of State of the Two-Dimensional Hubbard Model. , 2015, Physical review letters.

[11]  T. Esslinger Fermi-Hubbard Physics with Atoms in an Optical Lattice , 2010, 1007.0012.

[12]  Graham D. Bruce,et al.  Single-atom imaging of fermions in a quantum-gas microscope , 2015, Nature Physics.

[13]  Comparison of the Hanbury Brown–Twiss effect for bosons and fermions , 2006, Nature.

[14]  E. Gull,et al.  Equation of state of the fermionic two-dimensional Hubbard model , 2013, 1305.6798.

[15]  M. Rigol,et al.  Numerical linked-cluster algorithms. II. t-J models on the square lattice. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Tilman Esslinger,et al.  Short-Range Quantum Magnetism of Ultracold Fermions in an Optical Lattice , 2012, Science.

[17]  I Bloch,et al.  Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators , 2011, Science.

[18]  Vinay V Ramasesh,et al.  Quantum-gas microscope for fermionic atoms. , 2015, Physical review letters.

[19]  R. Sugar,et al.  Monte Carlo calculations of coupled boson-fermion systems. I , 1981 .

[20]  M. Greiner,et al.  Site-resolved imaging of a fermionic Mott insulator , 2015, Science.

[21]  R. Yamazaki,et al.  An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling , 2012, Nature Physics.

[22]  White,et al.  Numerical study of the two-dimensional Hubbard model. , 1989, Physical review. B, Condensed matter.

[23]  T. Esslinger,et al.  Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices. , 2015, Physical review letters.

[24]  E. Kapit,et al.  Even-odd correlation functions on an optical lattice , 2010, 1004.4903.

[25]  Immanuel Bloch,et al.  Single-site- and single-atom-resolved measurement of correlation functions , 2013, 1303.5652.

[26]  L. Cheuk,et al.  Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas , 2011, Science.

[27]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[28]  D. McKay,et al.  Imaging and addressing of individual fermionic atoms in an optical lattice , 2015, 1510.04744.

[29]  Hao Zhang,et al.  Observation of 2D Fermionic Mott Insulators of ^{40}K with Single-Site Resolution. , 2016, Physical review letters.

[30]  M. Greiner,et al.  Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model , 2016, Science.

[31]  A. A. Maradudin,et al.  Modern Problems in Condensed Matter Sciences , 1991 .

[32]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[33]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[34]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[35]  David A. Huse,et al.  Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms , 2014, Nature.

[36]  Hirsch Two-dimensional Hubbard model: Numerical simulation study. , 1985, Physical review. B, Condensed matter.

[37]  M. Rigol,et al.  Effect of particle statistics in strongly correlated two-dimensional Hubbard models , 2012, 1204.1556.

[38]  I. Bloch,et al.  Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases. , 2015, Physical review letters.

[39]  M. Rigol,et al.  Thermodynamics of strongly interacting fermions in two-dimensional optical lattices , 2011, 1104.5494.

[40]  Vincent M. Klinkhamer,et al.  Two fermions in a double well: exploring a fundamental building block of the Hubbard model. , 2014, Physical review letters.

[41]  R. R. Santos,et al.  Introduction to quantum Monte Carlo simulations for fermionic systems , 2003, cond-mat/0303551.

[42]  T. Müller,et al.  Local observation of antibunching in a trapped Fermi gas. , 2010 .

[43]  I. Bloch,et al.  Direct Probing of the Mott Crossover in the SU(N) Fermi-Hubbard Model , 2015, 1511.07287.

[44]  R. Scalettar,et al.  Compressibility of a fermionic mott insulator of ultracold atoms. , 2014, Physical review letters.

[45]  R. Scalettar,et al.  Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity. , 2009, Physical review letters.

[46]  Andrew G. Glen,et al.  APPL , 2001 .