Forecasting Daily Stock Volatility: the Role of Intraday Information and Market Conditions

Several recent studies advocate the use of nonparametric estimators of daily price variability that exploit intraday information. This paper compares four such estimators, realised volatility, realised range, realised power variation and realised bipower variation, by examining their in-sample distributional properties and out-of-sample forecast ranking when the object of interest is the conventional conditional variance. The analysis is based on a 7-year sample of transaction prices for 14 NYSE stocks. The forecast race is conducted in a GARCH framework and relies on several loss functions. The realized range fares relatively well in the in-sample fit analysis, for instance, regarding the extent to which it brings normality in returns. However, overall the realised power variation provides the most accurate 1-day-ahead forecasts. Forecast combination of all four intraday measures produces the smallest forecast errors in about half of the sampled stocks. A market conditions analysis reveals that the additional use of intraday data on day t-1 to forecast volatility on day t is most advantageous when day t is a low volume or an up-market day. These results have implications for option pricing, asset allocation and value-at-risk.

[1]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[2]  Siem Jan Koopman,et al.  Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements , 2005 .

[3]  Chris Brooks Predicting stock index volatility: can market volume help? , 1998 .

[4]  T. Andersen Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility , 1996 .

[5]  Kim Christensen,et al.  Realized Range-Based Estimation of Integrated Variance , 2006 .

[6]  Lisa A. Kramer,et al.  VOLATILITY FORECASTS, TRADING VOLUME, AND THE ARCH VERSUS OPTION-IMPLIED VOLATILITY TRADE-OFF , 2005 .

[7]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[8]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[9]  M. Martens Measuring and Forecasting S&P 500 Index-Futures Volatility Using High-Frequency Data , 2002 .

[10]  Todd E. Clark,et al.  Tests of Equal Forecast Accuracy and Encompassing for Nested Models , 1999 .

[11]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[12]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[13]  P. Franses,et al.  Forecasting stock market volatility using (non‐linear) Garch models , 1996 .

[14]  M. Martens,et al.  Testing the mixture‐of‐distributions hypothesis using “realized” volatility , 2003 .

[15]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[16]  Stephen L Taylor,et al.  Forecasting the volatility of currency exchange rates , 1987 .

[17]  Lilian Ng,et al.  The sources of GARCH: empirical evidence from an intraday returns model incorporating systematic and unique risks , 1993 .

[18]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[19]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[20]  Stephen L Taylor,et al.  The incremental volatility information in one million foreign exchange quotations , 1997 .

[21]  D. Dijk,et al.  Measuring volatility with the realized range , 2006 .

[22]  R. Oomen Properties of Realized Variance Under Alternative Sampling Schemes , 2006 .

[23]  Borus Jungbacker,et al.  Model-Based Measurement of Actual Volatility in High-Frequency Data , 2005 .

[24]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[25]  T. Brailsford,et al.  An evaluation of volatility forecasting techniques , 1996 .

[26]  P. Hansen,et al.  Consistent Ranking of Volatility Models , 2006 .

[27]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[28]  M. Richardson,et al.  A Direct Test of the Mixture of Distributions Hypothesis: Measuring the Daily Flow of Information , 1994, Journal of Financial and Quantitative Analysis.

[29]  I. Monroe Processes that can be Embedded in Brownian Motion , 1978 .

[30]  Spyros Makridakis,et al.  Accuracy measures: theoretical and practical concerns☆ , 1993 .

[31]  R. Roll,et al.  A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market , 2008 .

[32]  Michael W. Brandt,et al.  A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations , 2002 .

[33]  Christopher G. Lamoureux,et al.  Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects , 1990 .

[34]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[35]  H. Bessembinder,et al.  Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets , 1993, Journal of Financial and Quantitative Analysis.

[36]  Nelson Areal,et al.  The Realized Volatility of Ftse-100 Futures Prices , 2000 .

[37]  Jeff Fleming,et al.  High-Frequency Returns, Jumps and the Mixture of Normals Hypothesis , 2006 .

[38]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[39]  Todd E. Clark,et al.  Tests of Equal Forecast Accuracy and Encompassing for Nested Models , 1999 .

[40]  M. Parkinson The Extreme Value Method for Estimating the Variance of the Rate of Return , 1980 .

[41]  Michael A. Salsburg,et al.  Modeling and Forecasting , 2007, Int. CMG Conference.

[42]  Roel C. A. Oomen,et al.  Realised quantile-based estimation of the integrated variance , 2010 .

[43]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[44]  T. Bollerslev,et al.  Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon , 1999 .

[45]  Torben G. Andersen,et al.  Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities , 2005 .

[46]  Mohammad Majand,et al.  A GARCH examination of the relationship between volume and price variability in futures markets , 1991 .

[47]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[48]  E. Ghysels,et al.  Why Do Absolute Returns Predict Volatility So Well , 2006 .

[49]  Stephen L Taylor,et al.  Forecasting Currency Volatility: A Comparison of Implied Volatilities and AR(FI)MA Models , 2003 .

[50]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[51]  Anat R. Admati,et al.  A Theory of Intraday Patterns: Volume and Price Variability , 1988 .

[52]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[53]  É. Moulines,et al.  Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .

[54]  P. Hansen,et al.  A comparison of volatility models: Does anything beat a GARCH(1,1) ? , 2001 .

[55]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[56]  Petko S. Kalev,et al.  Public Information Arrival and Volatility of Intraday Stock Returns , 2004 .

[57]  Elena Kalotychou,et al.  Volatility and trading activity in Short Sterling futures , 2006 .

[58]  N. Shephard,et al.  Estimating quadratic variation using realized variance , 2002 .

[59]  N. Shephard,et al.  Econometric analysis of realised volatility and its use in estimating stochastic volatility models , 2000 .

[60]  Adrian Pagan,et al.  Alternative Models for Conditional Stock Volatility , 1989 .

[61]  T. Day,et al.  Stock market volatility and the information content of stock index options , 1992 .

[62]  S. Koopman,et al.  Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements , 2004 .

[63]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[64]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[65]  P. Newbold,et al.  Tests for Forecast Encompassing , 1998 .

[66]  Eric Ghysels,et al.  Série Scientifique Scientific Series the Midas Touch: Mixed Data Sampling Regression Models the Midas Touch: Mixed Data Sampling Regression Models* , 2022 .

[67]  Série Scientifique Scientific Series Information Content of Volatility Forecasts at Medium-term Horizons Information Content of Volatility Forecasts at Medium-term Horizons , 2022 .

[68]  Stephen Taylor,et al.  Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High Frequency Index Returns , 2000 .

[69]  Neil Shephard,et al.  Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise , 2004 .

[70]  George Tauchen,et al.  THE PRICE VARIABILITY-VOLUME RELATIONSHIP ON SPECULATIVE MARKETS , 1983 .

[71]  M. Martens Forecasting daily exchange rate volatility using intraday returns , 2001 .

[72]  Ser-Huang Poon,et al.  Practical Issues in Forecasting Volatility , 2005 .

[73]  Harry M. Kat,et al.  Volatility Prediction , 1994 .

[74]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[75]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[76]  A. Grané,et al.  The effect of realised volatility on stock returns risk estimates , 2007 .

[77]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[78]  Jeffrey R. Russell,et al.  Separating Microstructure Noise from Volatility , 2004 .

[79]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[80]  Ming Liu,et al.  Volume, Volatility, and Leverage: A Dynamic Analysis , 1995 .

[81]  Eric Ghysels,et al.  Periodic Autoregressive Conditional Heteroskedasticity , 1996 .