Trimannose-coupled antimiR-21 for macrophage-targeted inhalation treatment of acute inflammatory lung damage

[1]  D. McAuley,et al.  Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management. , 2022, Lancet.

[2]  C. Jakubzick,et al.  Biology of lung macrophages in health and disease. , 2022, Immunity.

[3]  L. Ware,et al.  Acute Respiratory Distress Syndrome 2022 1 Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes , 2022 .

[4]  J. Lieberman,et al.  Inflammasome activation in infected macrophages drives COVID-19 pathology , 2022 .

[5]  S. Engelhardt,et al.  MicroRNAs as therapeutic targets in cardiovascular disease , 2022, The Journal of clinical investigation.

[6]  R. Cummings The mannose receptor ligands and the macrophage glycome. , 2022, Current opinion in structural biology.

[7]  K. Tomizuka,et al.  Targeted delivery to macrophages and dendritic cells by chemically modified mannose ligand-conjugated siRNA , 2022, Nucleic acids research.

[8]  J. Lieberman,et al.  Inflammasome activation in infected macrophages drives COVID-19 pathology , 2021, Nature.

[9]  Larissa B. Thackray,et al.  Defining the risk of SARS-CoV-2 variants on immune protection , 2022, Nature.

[10]  M. Merad,et al.  Pathological sequelae of long-haul COVID , 2022, Nature Immunology.

[11]  Fabian J Theis,et al.  SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis , 2021, Cell.

[12]  William T. Harvey,et al.  SARS-CoV-2 variants, spike mutations and immune escape , 2021, Nature Reviews Microbiology.

[13]  André F. Rendeiro,et al.  A molecular single-cell lung atlas of lethal COVID-19 , 2021, Nature.

[14]  Timothy L. Tickle,et al.  COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets , 2021, Nature.

[15]  T. Meitinger,et al.  MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload , 2021, Circulation.

[16]  Fabian J. Theis,et al.  Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis , 2020, Nature Communications.

[17]  M. Merad,et al.  Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages , 2020, Nature Reviews Immunology.

[18]  R. Zhou,et al.  DAMP-sensing receptors in sterile inflammation and inflammatory diseases , 2019, Nature Reviews Immunology.

[19]  R. Zhou,et al.  DAMP-sensing receptors in sterile inflammation and inflammatory diseases , 2019, Nature Reviews Immunology.

[20]  M. Lindner,et al.  Generation of Human 3D Lung Tissue Cultures (3D-LTCs) for Disease Modeling. , 2019, Journal of visualized experiments : JoVE.

[21]  C. Ämmälä,et al.  Targeted delivery of antisense oligonucleotides to pancreatic β-cells , 2018, Science Advances.

[22]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[23]  Daniel Brodie,et al.  Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment , 2018, JAMA.

[24]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[25]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[26]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[27]  S. Dudoit,et al.  Normalization of RNA-seq data using factor analysis of control genes or samples , 2014, Nature Biotechnology.

[28]  A. Mildner,et al.  Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. , 2013, Immunity.

[29]  L. Martínez-Pomares The mannose receptor , 2012, Journal of leukocyte biology.

[30]  C. Dieterich,et al.  FLEXBAR—Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms , 2012, Biology.

[31]  Sebastian D. Mackowiak,et al.  miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades , 2011, Nucleic acids research.

[32]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[33]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[34]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[35]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[36]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[37]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[38]  Mark J. P. Chaisson,et al.  Sequence analysis STAR: ultrafast universal RNA-seq aligner , 2022 .