A complex way to compute fMRI activation

In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier "image reconstruction" are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional "activation" based on magnitude voxel time courses [Bandettini, P., Jesmanowicz, A., Wong, E., Hyde, J.S., 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 (2): 161-173 and Cox, R.W., Jesmanowicz, A., Hyde, J.S., 1995. Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33 (2): 230-236]. Here, we propose to directly model the entire complex or bivariate data rather than just the magnitude-only data. A nonlinear multiple regression model is used to model activation of the complex signal, and a likelihood ratio test is derived to determine activation in each voxel. We investigate the performance of the model on a real dataset, then compare the magnitude-only and complex models under varying signal-to-noise ratios in a simulation study with varying activation contrast effects.

[1]  A. H. Andersen,et al.  Analysis of noise in phase contrast MR imaging. , 1996, Medical physics.

[2]  V D Calhoun,et al.  Independent component analysis of fMRI data in the complex domain , 2002, Magnetic resonance in medicine.

[3]  William H. Press,et al.  Numerical recipes in C , 2002 .

[4]  S. C. Strother,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves , 2002, NeuroImage.

[5]  R. Nowak,et al.  Generalized likelihood ratio detection for fMRI using complex data , 1999, IEEE Transactions on Medical Imaging.

[6]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[7]  T. Severini Likelihood Methods in Statistics , 2001 .

[8]  D B Rowe,et al.  Bayesian source separation for reference function determination in fMRI , 2001, Magnetic resonance in medicine.

[9]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[10]  N. Wax,et al.  Selected Papers on Noise and Stochastic Processes , 1955 .

[11]  S. Rice Mathematical analysis of random noise , 1944 .

[12]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[13]  Daniel B. Rowe,et al.  An evaluation of thresholding techniques in fMRI analysis , 2004, NeuroImage.

[14]  R W Cox,et al.  Real‐Time Functional Magnetic Resonance Imaging , 1995, Magnetic resonance in medicine.

[15]  Neil H. Timm,et al.  Multivariate Reduced-Rank Regression , 1999, Technometrics.

[16]  G. Glover,et al.  Neuroimaging at 1.5 T and 3.0 T: Comparison of oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[17]  G. Reinsel,et al.  Multivariate Reduced-Rank Regression: Theory and Applications , 1998 .

[18]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[19]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[20]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[21]  William H. Press,et al.  Numerical recipes , 1990 .

[22]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[23]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .