Remarkably Deep Moiré Potential for Intralayer Excitons in MoSe2/MoS2 Twisted Heterobilayers.

A moiré superlattice formed in twisted van der Waals bilayers has emerged as a new tuning knob for creating new electronic states in two-dimensional materials. Excitonic properties can also be altered drastically due to the presence of moiré potential. However, quantifying the moiré potential for excitons is nontrivial. By creating a large ensemble of MoSe2/MoS2 heterobilayers with a systematic variation of twist angles, we map out the minibands of interlayer and intralayer excitons as a function of twist angles, from which we determine the moiré potential for excitons. Surprisingly, the moiré potential depth for intralayer excitons is up to ∼130 meV, comparable to that for interlayer excitons. This result is markedly different from theoretical calculations based on density functional theory, which show an order of magnitude smaller moiré potential for intralayer excitons. The remarkably deep intralayer moiré potential is understood within the framework of structural reconstruction within the moiré unit cell.

[1]  Xiaodong Xu,et al.  Moiré trions in MoSe2/WSe2 heterobilayers , 2021, Nature Nanotechnology.

[2]  Kenji Watanabe,et al.  Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice , 2021, Nature Communications.

[3]  Yia-Chung Chang,et al.  Signatures of moiré trions in WSe2/MoSe2 heterobilayers , 2021, Nature.

[4]  Kenji Watanabe,et al.  Phonon renormalization in reconstructed MoS2 moiré superlattices , 2020, Nature Materials.

[5]  A. Pasupathy,et al.  Deep moiré potentials in twisted transition metal dichalcogenide bilayers , 2020, Nature Physics.

[6]  J. Shan,et al.  Stripe phases in WSe2/WS2 moiré superlattices , 2020, Nature Materials.

[7]  Kenji Watanabe,et al.  Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice , 2020, Nature Physics.

[8]  Mit H. Naik,et al.  Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices , 2020, Nature Materials.

[9]  S. Forrest,et al.  Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers , 2020, Nature Communications.

[10]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[11]  B. Gerardot,et al.  Highly energy-tunable quantum light from moiré-trapped excitons , 2020, Science Advances.

[12]  Kenji Watanabe,et al.  Visualization of moiré superlattices , 2020, Nature Nanotechnology.

[13]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[14]  Kyeongjae Cho,et al.  Flat Bands and Mechanical Deformation Effects in the Moiré Superlattice of MoS2-WSe2 Heterobilayers. , 2020, ACS nano.

[15]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[16]  Thomas H. Bointon,et al.  Atomic reconstruction in twisted bilayers of transition metal dichalcogenides , 2019, Nature Nanotechnology.

[17]  Kenji Watanabe,et al.  Flat bands in twisted bilayer transition metal dichalcogenides , 2019, Nature Physics.

[18]  Kenji Watanabe,et al.  Moiré superlattice in a MoSe 2 / hBN / MoSe 2 heterostructure : from coherent coupling of inter-and intra-layer excitons to correlated Mott-like states of electrons , 2019 .

[19]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[20]  B. Gerardot,et al.  Spin–layer locking of interlayer excitons trapped in moiré potentials , 2019, Nature Materials.

[21]  Xiaodong Xu,et al.  One-Dimensional Moir\'e Excitons in Transition-Metal Dichalcogenide Heterobilayers , 2019, 1912.06628.

[22]  B. Jonker,et al.  Atomic reconstruction and moir\'e patterns in transition metal dichalcogenide van der Waals heterostructures , 2019, 1911.12282.

[23]  Juwon Lee,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[24]  Xiaodong Xu,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[25]  Chan-Shan Yang,et al.  Resolving spin, valley, and moiré quasi-angular momentum of interlayer excitons in WSe2/WS2 heterostructures , 2019, 1902.05887.

[26]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[27]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[28]  Kenji Watanabe,et al.  Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures , 2018, Nature Photonics.

[29]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[30]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[31]  Kyeongjae Cho,et al.  Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS2-WSe2 Heterobilayers. , 2017, Nano letters.

[32]  Zhongfan Liu,et al.  Monitoring Local Strain Vector in Atomic-Layered MoSe2 by Second-Harmonic Generation. , 2017, Nano letters.

[33]  Xiaodong Xu,et al.  Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.

[34]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[35]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.