Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light

[1]  Shuntaro Takeda,et al.  Quantum-Enhanced Optical-Phase Tracking , 2012, Science.

[2]  C. M. Mow-Lowry,et al.  Balanced homodyne detection of optical quantum states at audio-band frequencies and below , 2012, 1205.3229.

[3]  C. Broeck,et al.  Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3 , 2011, 1111.7314.

[4]  Peter Fritschel,et al.  DC readout experiment in Enhanced LIGO , 2011, 1110.2815.

[5]  H. Janka,et al.  Measuring neutron-star properties via gravitational waves from neutron-star mergers. , 2011, Physical review letters.

[6]  D. McClelland,et al.  Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. , 2011, Optics letters.

[7]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[8]  N. Mavalvala,et al.  Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors , 2011 .

[9]  T. Hinderer,et al.  Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals , 2011, 1101.1673.

[10]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[11]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[12]  Hartmut Grote,et al.  The GEO 600 status , 2010 .

[13]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[14]  L. Barsotti,et al.  A general approach to optomechanical parametric instabilities , 2009, 0910.2716.

[15]  K. S. Thorne,et al.  SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA , 2009, 0909.3583.

[16]  T. Hayler,et al.  Observation of a kilogram-scale oscillator near its quantum ground state , 2009 .

[17]  Keisuke Goda,et al.  A quantum-enhanced prototype gravitational-wave detector , 2008, 0802.4118.

[18]  R. Schnabel,et al.  Quantum engineering of squeezed states for quantum communication and metrology , 2007, 0707.2845.

[19]  A. Furusawa,et al.  Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. , 2007, Optics express.

[20]  Jaromír Fiurásek,et al.  Experimental demonstration of continuous variable purification of squeezed States. , 2006, Physical review letters.

[21]  M. Loupias,et al.  The Virgo status , 2006 .

[22]  Karsten Danzmann,et al.  Coherent control of vacuum squeezing in the gravitational-wave detection band. , 2006, Physical review letters.

[23]  M. Beck Introductory Quantum Optics , 2005 .

[24]  Kirk McKenzie,et al.  Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.

[25]  Berkeley,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2000, gr-qc/0008026.

[26]  F. Raab,et al.  Laser interferometer gravitational-wave observatory , 1993, Proceedings of LEOS '93.

[27]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[28]  Kimble,et al.  Precision measurement beyond the shot-noise limit , 1987 .

[29]  Mertz,et al.  Observation of squeezed states generated by four-wave mixing in an optical cavity. , 1985, Physical review letters.

[30]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[31]  Carlton M. Caves,et al.  Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .