Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix.

[1]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[2]  A. Lehninger Biochemistry: The Molecular Basis of Cell Structure and Function , 1970 .

[3]  Stargardt Jf,et al.  Reversible heterogeneous reduction and oxidation of sperm whale myoglobin at a surface modified gold minigrid electrode. , 1978 .

[4]  G. S. Wilson,et al.  Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer , 1980 .

[5]  Raymond Reeves,et al.  Modern polarographic methods in analytical chemistry , 1980 .

[6]  Douglas J. Moffatt,et al.  Resolution Of Complex Band Contours By Means Of Fourier Self-Deconvolution , 1981, Other Conferences.

[7]  Douglas J. Moffatt,et al.  Fourier Self-Deconvolution: A Method for Resolving Intrinsically Overlapped Bands , 1981 .

[8]  Ralph E. White,et al.  Comprehensive Treatise of Electrochemistry , 1981 .

[9]  A. Fogg Electroanalytical chemistry, vol.13: Edited by A. J. Bard. Pp. 400. Dekker, New York. 1984. SFr. 159 , 1984 .

[10]  Y. Okahata,et al.  Electrochemical permeability control through a redox bilayer film , 1985 .

[11]  Y. Okahata,et al.  Electrochemical permeability control through a redox bilayer film , 1985 .

[12]  K. Takeuchi,et al.  Electrocatalytic reduction of nitrite to ammonia based on a water-soluble iron porphyrin. , 1986, Journal of the American Chemical Society.

[13]  J. Klinowski,et al.  Zeolites treated with silicon tetrachloride vapour. Part 1.—Preparation and characterisation , 1986 .

[14]  B. C. King,et al.  A study of the electron transfer and oxygen binding reactions of myoglobin , 1987 .

[15]  Y. Okahata,et al.  Permeability-controllable membranes. 7. Electrochemical responsive gate membranes of a multibilayer film containing a viologen group as redox sites , 1988 .

[16]  D. Rolison Zeolite-modified electrodes and electrode-modified zeolites , 1990 .

[17]  J. Klinowski,et al.  Zeolites Treated with Silicon Tetrachloride Vapor. Part 5. Catalytic Cracking of n-Hexane , 1990 .

[18]  D. Rolison Zeolite-modified electrodes and electrode-modified zeolites , 1990 .

[19]  T. Kunitake,et al.  Functional conversion of myoglobin bound to synthetic bilayer membranes : from dioxygen storage protein to redox enzyme , 1991 .

[20]  Isao Taniguchi,et al.  Direct electron transfer of horse heart myoglobin at an indium oxide electrode , 1992 .

[21]  T. Meyer,et al.  Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film , 1992 .

[22]  James F. Rusling,et al.  Enhanced electron transfer for myoglobin in surfactant films on electrodes , 1993 .

[23]  S. Mazumdar,et al.  Micelle-induced release of haem–NO from nitric oxide complex of myoglobin , 1993 .

[24]  I. Taniguchi,et al.  Effect of Surface Hydrophilicity of an Indium Oxide Electrode on Direct Electron Transfer of Myoglobins , 1993 .

[25]  P. Tanev,et al.  Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds , 1994, Nature.

[26]  J. D. Stuart,et al.  CATALYTIC REDUCTION OF ORGANOHALIDE POLLUTANTS BY MYOGLOBIN IN A BIOMEMBRANE-LIKE SURFACTANT FILM , 1995 .

[27]  J. Rusling,et al.  Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. , 1995, Analytical chemistry.

[28]  K. Balkus,et al.  Enzyme immobilization in MCM-41 molecular sieve , 1996 .

[29]  J. Deng,et al.  Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface. , 1996, Analytical chemistry.

[30]  J. Rusling,et al.  PROTON-COUPLED ELECTRON TRANSFER FROM ELECTRODES TO MYOGLOBIN IN ORDERED BIOMEMBRANE-LIKE FILMS , 1997 .

[31]  Baohong Liu,et al.  Characterization of immobilization of an enzyme in a modified Y zeolite matrix and its application to an amperometric glucose biosensor. , 1997, Analytical chemistry.

[32]  J. Rusling Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films , 1998 .

[33]  J. Rusling Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films , 1998 .

[34]  Roberto Santucci,et al.  Direct electrochemistry of membrane-entrapped horseradish peroxidase.: Part I. A voltammetric and spectroscopic study , 1998 .

[35]  T. Yamaguchi,et al.  Direct electrochemistry of cytochrome c at a glassy carbon electrode covered with a microporous alumina membrane , 1998 .

[36]  Roberto Santucci,et al.  Direct electrochemistry of membrane-entrapped horseradish peroxidase.: Part II: Amperometric detection of hydrogen peroxide , 1998 .

[37]  U. Wollenberger,et al.  Cytochrome c/Clay‐Modified Electrode , 1999 .

[38]  Genxi Li,et al.  Direct Electrochemistry and Enhanced Catalytic Activity for Hemoglobin in a Sodium Montmorillonite Film , 2000 .

[39]  E. Lojou,et al.  Electrochemical behavior of c-type cytochromes at clay-modified carbon electrodes: a model for the interaction between proteins and soils , 2000 .

[40]  N. Hu,et al.  Facilitated electron transfer for myoglobin in surfactant–polymer 2C12N+PVS− composite films on pyrolytic graphite electrodes , 2000 .

[41]  H. Ju,et al.  Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. , 2000, Analytical biochemistry.

[42]  T. Kajino,et al.  Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent , 2001 .

[43]  N. Li,et al.  The direct electrochemistry of myoglobin at a DL-homocysteine self-assembled gold electrode. , 2001, Bioelectrochemistry.

[44]  S. Mazumdar,et al.  Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants. , 2001, Bioelectrochemistry.

[45]  J. Zagal,et al.  Electroreduction of nitrite by hemin, myoglobin and hemoglobin in surfactant films , 2001 .

[46]  H. Ju,et al.  Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. , 2002, Analytical chemistry.

[47]  Songqin Liu,et al.  Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. , 2002, Analytical biochemistry.

[48]  N. Hu,et al.  Myoglobin in polyacrylamide hydrogel films: direct electrochemistry and electrochemical catalysis. , 2002, Talanta.

[49]  P. Tanev,et al.  Recent Advances in Synthesis and Catalytic Applications of Mesoporous Molecular Sieves , 2002 .