Efficient generation of terahertz pulses from single infrared beams in C/GaAs/C waveguiding heterostructures

The difference-frequency terahertz (THz) pulse generation from Fourier components of a single infrared laser pulse in waveguiding heterostructures is considered. It is shown that a proper choice of the waveguide parameters allows for the significant reduction of the input pulse group-velocity dispersion (GVD). As a result, it is possible to noticeably increase the length of such devices and, consequently, the pump-THz pulse conversion efficiency by employing low absorbing materials with high intrinsic GVD coefficients for their fabrication. A particular example of such a scheme--a C/GaAs/C waveguiding heterostructure--is analyzed, a corresponding conversion rate is found, and ways for its further improvement are considered.

[1]  Juncheng Cao,et al.  Nonlinear dynamics in multisubband semiconductor quantum wells under terahertz radiation , 2004 .

[2]  Fox,et al.  Coherent submillimeter-wave emission from charge oscillations in a double-well potential. , 1992, Physical review letters.

[3]  Shuji Okada,et al.  Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application , 2004 .

[4]  Y.J. Ding,et al.  Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  L Videau,et al.  Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals. , 2002, Physical review letters.

[6]  Xiang Zhang,et al.  Terahertz optical rectification from 〈110〉 zinc‐blende crystals , 1994 .

[7]  Ajay Nahata,et al.  A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling , 1996 .

[8]  V. Wallace,et al.  In vivo study of human skin using pulsed terahertz radiation , 2004, Physics in medicine and biology.

[9]  J. Yardley,et al.  Generation of Terahertz Radiation From a Poled Polymer , 1995 .

[10]  Timothy J. Carrig,et al.  Generation of terahertz radiation using electro‐optic crystal mosaics , 1995 .

[11]  Wei Shi,et al.  Designs of terahertz waveguides for efficient parametric terahertz generation , 2003 .

[12]  J. Kuhl,et al.  Scaling up the energy of THz pulses created by optical rectification. , 2005, Optics express.

[13]  Xiang Zhang,et al.  Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics , 1992 .

[14]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[15]  Nobuo Takeuchi,et al.  Far-Infrared Difference-Frequency Generation by Picosecond Laser Pulses , 1970 .

[16]  D. Grischkowsky,et al.  MEASUREMENTS OF THE THZ ABSORPTION AND DISPERSION OF ZNTE AND THEIR RELEVANCE TO THE ELECTRO-OPTIC DETECTION OF THZ RADIATION , 1999 .

[17]  Xiang Zhang,et al.  Free‐space radiation from electro‐optic crystals , 1990 .

[18]  F. Kapron,et al.  Pulse transmission through a dielectric optical waveguide. , 1971, Applied optics.

[19]  Xiang Zhang,et al.  Terahertz beam generation by femtosecond optical pulses in electro‐optic materials , 1992 .

[20]  Stefan Schmitt-Rink,et al.  Far-infrared light generation at semiconductor surfaces and its spectroscopic applications , 1992 .

[21]  Mansoor Sheik-Bahae,et al.  Limitation due to three‐photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap , 1994 .

[22]  Thomas Dekorsy,et al.  High-intensity terahertz radiation from a microstructured large-area photoconductor , 2005 .

[23]  T. Elsaesser,et al.  Femtosecond infrared pulses tunable from 9 to 18 mum at an 88-MHz repetition rate. , 1998, Optics letters.

[24]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[25]  Timothy J. Carrig,et al.  Scaling of terahertz radiation via optical rectification in electro‐optic crystals , 1995 .

[26]  Masayoshi Tonouchi,et al.  Terahertz radiation from superconducting YBa2Cu3O7−δ thin films excited by femtosecond optical pulses , 1996 .

[27]  Levi,et al.  Optical rectification at semiconductor surfaces. , 1992, Physical review letters.

[28]  A. Davies,et al.  INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY , 2001 .

[29]  Kei-Hsiung Yang,et al.  Generation of Far‐Infrared Radiation by Picosecond Light Pulses in LiNbO3 , 1971 .

[30]  Yujie J. Ding,et al.  Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium. , 2004, Optics letters.

[31]  C. Flytzanis,et al.  Infrared Dispersion of Second-Order Electric Susceptibilities in Semiconducting Compounds , 1972 .

[32]  J. Coutaz,et al.  Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas , 2001 .

[33]  C. Sirtori,et al.  THz sideband generation at telecom wavelengths in a GaAs-based quantum cascade laser , 2005 .

[34]  T. Elsaesser,et al.  Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: Experiment and theory , 1999 .

[35]  Luo,et al.  Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy hole excitons. , 1992, Physical review letters.

[36]  Arnold Migus,et al.  Generation of ultrabroadband femtosecond pulses in the mid‐infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate , 1995 .