Efficient construction and simplification of Delaunay meshes

Delaunay meshes (DM) are a special type of triangle mesh where the local Delaunay condition holds everywhere. We present an efficient algorithm to convert an arbitrary manifold triangle mesh M into a Delaunay mesh. We show that the constructed DM has O(Kn) vertices, where n is the number of vertices in M and K is a model-dependent constant. We also develop a novel algorithm to simplify Delaunay meshes, allowing a smooth choice of detail levels. Our methods are conceptually simple, theoretically sound and easy to implement. The DM construction algorithm also scales well due to its O(nK log K) time complexity. Delaunay meshes have many favorable geometric and numerical properties. For example, a DM has exactly the same geometry as the input mesh, and it can be encoded by any mesh data structure. Moreover, the empty geodesic circumcircle property implies that the commonly used cotangent Laplace-Beltrami operator has non-negative weights. Therefore, the existing digital geometry processing algorithms can benefit the numerical stability of DM without changing any codes. We observe that DMs can improve the accuracy of the heat method for computing geodesic distances. Also, popular parameterization techniques, such as discrete harmonic mapping, produce more stable results on the DMs than on the input meshes.

[1]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[2]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[3]  Pierre Alliez,et al.  On the equilibrium of simplicial masonry structures , 2013, ACM Trans. Graph..

[4]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[5]  Hao Zhang,et al.  Surface sampling and the intrinsic Voronoi diagram , 2008, Comput. Graph. Forum.

[6]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[7]  Damrong Guoy,et al.  Well-centered Planar Triangulation - An Iterative Approach , 2008, IMR.

[8]  Herbert Edelsbrunner,et al.  Topology preserving edge contraction , 1998 .

[9]  S. SIAMJ. ANISOTROPIC CENTROIDAL VORONOI TESSELLATIONS AND THEIR APPLICATIONS∗ , 2004 .

[10]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[11]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[12]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[13]  Samuel Rippa,et al.  Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..

[14]  Baining Guo,et al.  Computing self-supporting surfaces by regular triangulation , 2013, ACM Trans. Graph..

[15]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[16]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[17]  L. Paul Chew,et al.  Constrained Delaunay triangulations , 1987, SCG '87.

[18]  LiuYong-Jin,et al.  Efficient construction and simplification of Delaunay meshes , 2015 .

[19]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[20]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[21]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[22]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[23]  Lin Lu,et al.  Global Optimization of Centroidal Voronoi Tessellation with Monte Carlo Approach , 2012, IEEE Transactions on Visualization and Computer Graphics.

[24]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[25]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[26]  Kai Tang,et al.  Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[28]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..

[29]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[30]  Hao Zhang,et al.  Delaunay mesh construction , 2007, Symposium on Geometry Processing.

[31]  Peter Schröder,et al.  An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing , 2006, Computing.

[32]  Hiroshi Maehara,et al.  On a proper acute triangulation of a polyhedral surface , 2011, Discret. Math..

[33]  Shubhangi Saraf,et al.  Acute and nonobtuse triangulations of polyhedral surfaces , 2009, Eur. J. Comb..

[34]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[35]  Mathieu Desbrun,et al.  HOT: Hodge-optimized triangulations , 2011, ACM Trans. Graph..

[36]  Mathieu Desbrun,et al.  Weighted Triangulations for Geometry Processing , 2014, ACM Trans. Graph..

[37]  D. Glickenstein Geometric triangulations and discrete Laplacians on manifolds , 2005, math/0508188.

[38]  Herbert Edelsbrunner,et al.  Triangulating topological spaces , 1994, SCG '94.

[39]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[40]  Thomas M. Liebling,et al.  Voronoi diagrams on piecewise flat surfaces and an application to biological growth , 2001, Theor. Comput. Sci..

[41]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[42]  Tudor Zamfirescu,et al.  Acute triangulations: a short survey , 2005 .