Explanation in Multi-Stakeholder Recommendation for Enterprise Decision Support Systems

[1]  Thomas Lukasiewicz,et al.  Complexity results for structure-based causality , 2001, Artif. Intell..

[2]  Tim Miller,et al.  Explanation in Artificial Intelligence: Insights from the Social Sciences , 2017, Artif. Intell..

[3]  Neil J. Hurley,et al.  Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation , 2011, TOIT.

[4]  Saul Vargas,et al.  Novelty and Diversity in Recommender Systems , 2015, Recommender Systems Handbook.

[5]  Matevz Kunaver,et al.  Diversity in recommender systems - A survey , 2017, Knowl. Based Syst..

[6]  Li Chen,et al.  Trust-inspiring explanation interfaces for recommender systems , 2007, Knowl. Based Syst..

[7]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[8]  Judith Masthoff,et al.  Group Recommender Systems: Combining Individual Models , 2011, Recommender Systems Handbook.

[9]  Damien Charlet,et al.  Multi-Pareto-Ranking Evolutionary Algorithm , 2012, EvoCOP.

[10]  Dietmar Jannach,et al.  Multistakeholder recommendation: Survey and research directions , 2020, User Modeling and User-Adapted Interaction.

[11]  Yehuda Koren,et al.  Advances in Collaborative Filtering , 2011, Recommender Systems Handbook.

[12]  Mouzhi Ge,et al.  How should I explain? A comparison of different explanation types for recommender systems , 2014, Int. J. Hum. Comput. Stud..

[13]  Xu Chen,et al.  Explainable Recommendation: A Survey and New Perspectives , 2018, Found. Trends Inf. Retr..

[14]  Judith Masthoff,et al.  Explaining Recommendations: Design and Evaluation , 2015, Recommender Systems Handbook.