IMEX schemes for a parabolic-ODE system of European options with liquidity shocks

A coupled system, where one is a degenerate parabolic equation and the other has no diffusion term, arises in the modeling of European options with liquidity shocks. Two implicit-explicit (IMEX) schemes that preserve the positivity of the differential problem solution are constructed and analyzed. Numerical experiments confirm the theoretical results and illustrate the high accuracy and efficiency of the schemes in combination with Richardson extrapolation in time.

[1]  J. Blom,et al.  An implicit-explicit approach for atmospheric transport-chemistry problems , 1996 .

[2]  W. Mudzimbabwe Numerical solution of a stochastic control problem of option pricing for a liquidity switching market , 2015 .

[3]  Abdul Q. M. Khaliq,et al.  New Numerical Scheme for Pricing American Option with Regime-Switching , 2009 .

[4]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[5]  R. Carmona Indifference Pricing: Theory and Applications , 2008 .

[6]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[7]  P. P. Matus,et al.  The Maximum Principle and Some of Its Applications , 2002 .

[8]  Tim Siu-Tang Leung A Markov-modulated stochastic control problem with optimal multiple stopping with application to finance , 2010, 49th IEEE Conference on Decision and Control (CDC).

[9]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[10]  Ferenc Izsák,et al.  An IMEX scheme for reaction-diffusion equations: application for a PEM fuel cell model , 2013 .

[11]  G. Russo,et al.  Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .

[12]  Peter A. Forsyth,et al.  Analysis of the stability of the linear boundary condition for the Black–Scholes equation , 2004 .

[13]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[14]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[15]  A. Samarskii The Theory of Difference Schemes , 2001 .

[16]  Michael Ludkovski,et al.  EUROPEAN OPTION PRICING WITH LIQUIDITY SHOCKS , 2013 .

[17]  J. M. Corcuera,et al.  On the Optimal Investment , 2016 .

[18]  Jari Toivanen,et al.  IMEX schemes for pricing options under jump-diffusion models , 2014 .

[19]  Cheng Wang,et al.  An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term , 2015, J. Comput. Appl. Math..