Über eine neue Begründung der Theorie der algebraischen Zahlen.

Ich will im Folgenden die Resultate der auf S. 51—84 des vorigen Bandes d. J. veröffentlichten Arbeit „Neue Grundlagen der Arithmetik* (ich werde sie mit G. d. A. zitieren) zur Untersuchung der algebraischen Zahlen für den Bereich einer beliebigen Primzahl p verwenden, und zeigen, daß man im wesentlichen zu denselben Resultaten für dieses größere Gebiet gelangt, wie sie a. a. 0. für die rationalen Zahlen gefunden werden. Auf diese Ergebnisse läßt sich, wie dann weiter gezeigt wird, eine Theorie der algebraischen Zahlen gründen, welche vollständig mit der durch Puiseux begründeten Theorie der algebraischen Funktionen übereinstimmt, und die auch auf der Untersuchung der algebraischen Einheiten ausgedehnt werden kann, wie in einer späteren Arbeit näher dargelegt werden soll.